It is possible to use the shift method to get a more tight structure of the panmagic 21x21 square.
You have to puzzle to get the first row. Construct a 3x7 = 7x3 matrix:
Matrix 3x7 = Matrix 7x3
1 | 19 | 13 | 33 | 1 | 19 | 13 | 33 | ||||
5 | 16 | 12 | 33 | 5 | 16 | 12 | 33 | ||||
14 | 15 | 4 | 33 | 14 | 15 | 4 | 33 | ||||
20 | 11 | 2 | 33 | 20 | 11 | 2 | 33 | ||||
18 | 7 | 8 | 33 | 18 | 7 | 8 | 33 | ||||
10 | 6 | 17 | 33 | 10 | 6 | 17 | 33 | ||||
9 | 3 | 21 | 33 | 9 | 3 | 21 | 33 | ||||
77 | 77 | 77 | 77 | 77 | 77 |
The magic sum of 1 up to 21 is 231. In the matrix the sum of each column is (7/21 x 231 =) 77 and the sum of each row is (3/21 x 231 =) 33 is. Put the numbers in the first row:
First row according to 3x7 matrix
1 | 17 | 11 | 5 | 21 | 7 | 14 | 13 | 6 | 20 | 12 | 3 | 18 | 4 | 19 | 10 | 2 | 16 | 9 | 8 | 15 |
First row according to matrix 7x3
1 | 17 | 11 | 5 | 21 | 7 | 14 | 13 | 6 | 20 | 12 | 3 | 18 | 4 | 19 | 10 | 2 | 16 | 9 | 8 | 15 |
Construct row 2 up to 21 of the first grid by shifting the first row each time ([3+7]/2 =) 5 places to the left. The second grid is a reflection (= rotated by a quarter and mirrored) of the first grid.
Take 21x [number -/- 1]) from first grid
1 | 17 | 11 | 5 | 21 | 7 | 14 | 13 | 6 | 20 | 12 | 3 | 18 | 4 | 19 | 10 | 2 | 16 | 9 | 8 | 15 |
7 | 14 | 13 | 6 | 20 | 12 | 3 | 18 | 4 | 19 | 10 | 2 | 16 | 9 | 8 | 15 | 1 | 17 | 11 | 5 | 21 |
12 | 3 | 18 | 4 | 19 | 10 | 2 | 16 | 9 | 8 | 15 | 1 | 17 | 11 | 5 | 21 | 7 | 14 | 13 | 6 | 20 |
10 | 2 | 16 | 9 | 8 | 15 | 1 | 17 | 11 | 5 | 21 | 7 | 14 | 13 | 6 | 20 | 12 | 3 | 18 | 4 | 19 |
15 | 1 | 17 | 11 | 5 | 21 | 7 | 14 | 13 | 6 | 20 | 12 | 3 | 18 | 4 | 19 | 10 | 2 | 16 | 9 | 8 |
21 | 7 | 14 | 13 | 6 | 20 | 12 | 3 | 18 | 4 | 19 | 10 | 2 | 16 | 9 | 8 | 15 | 1 | 17 | 11 | 5 |
20 | 12 | 3 | 18 | 4 | 19 | 10 | 2 | 16 | 9 | 8 | 15 | 1 | 17 | 11 | 5 | 21 | 7 | 14 | 13 | 6 |
19 | 10 | 2 | 16 | 9 | 8 | 15 | 1 | 17 | 11 | 5 | 21 | 7 | 14 | 13 | 6 | 20 | 12 | 3 | 18 | 4 |
8 | 15 | 1 | 17 | 11 | 5 | 21 | 7 | 14 | 13 | 6 | 20 | 12 | 3 | 18 | 4 | 19 | 10 | 2 | 16 | 9 |
5 | 21 | 7 | 14 | 13 | 6 | 20 | 12 | 3 | 18 | 4 | 19 | 10 | 2 | 16 | 9 | 8 | 15 | 1 | 17 | 11 |
6 | 20 | 12 | 3 | 18 | 4 | 19 | 10 | 2 | 16 | 9 | 8 | 15 | 1 | 17 | 11 | 5 | 21 | 7 | 14 | 13 |
4 | 19 | 10 | 2 | 16 | 9 | 8 | 15 | 1 | 17 | 11 | 5 | 21 | 7 | 14 | 13 | 6 | 20 | 12 | 3 | 18 |
9 | 8 | 15 | 1 | 17 | 11 | 5 | 21 | 7 | 14 | 13 | 6 | 20 | 12 | 3 | 18 | 4 | 19 | 10 | 2 | 16 |
11 | 5 | 21 | 7 | 14 | 13 | 6 | 20 | 12 | 3 | 18 | 4 | 19 | 10 | 2 | 16 | 9 | 8 | 15 | 1 | 17 |
13 | 6 | 20 | 12 | 3 | 18 | 4 | 19 | 10 | 2 | 16 | 9 | 8 | 15 | 1 | 17 | 11 | 5 | 21 | 7 | 14 |
18 | 4 | 19 | 10 | 2 | 16 | 9 | 8 | 15 | 1 | 17 | 11 | 5 | 21 | 7 | 14 | 13 | 6 | 20 | 12 | 3 |
16 | 9 | 8 | 15 | 1 | 17 | 11 | 5 | 21 | 7 | 14 | 13 | 6 | 20 | 12 | 3 | 18 | 4 | 19 | 10 | 2 |
17 | 11 | 5 | 21 | 7 | 14 | 13 | 6 | 20 | 12 | 3 | 18 | 4 | 19 | 10 | 2 | 16 | 9 | 8 | 15 | 1 |
14 | 13 | 6 | 20 | 12 | 3 | 18 | 4 | 19 | 10 | 2 | 16 | 9 | 8 | 15 | 1 | 17 | 11 | 5 | 21 | 7 |
3 | 18 | 4 | 19 | 10 | 2 | 16 | 9 | 8 | 15 | 1 | 17 | 11 | 5 | 21 | 7 | 14 | 13 | 6 | 20 | 12 |
2 | 16 | 9 | 8 | 15 | 1 | 17 | 11 | 5 | 21 | 7 | 14 | 13 | 6 | 20 | 12 | 3 | 18 | 4 | 19 | 10 |
+ 1x number from second grid (= reflection of first grid)
15 | 21 | 20 | 19 | 8 | 5 | 6 | 4 | 9 | 11 | 13 | 18 | 16 | 17 | 14 | 3 | 2 | 1 | 7 | 12 | 10 |
8 | 5 | 6 | 4 | 9 | 11 | 13 | 18 | 16 | 17 | 14 | 3 | 2 | 1 | 7 | 12 | 10 | 15 | 21 | 20 | 19 |
9 | 11 | 13 | 18 | 16 | 17 | 14 | 3 | 2 | 1 | 7 | 12 | 10 | 15 | 21 | 20 | 19 | 8 | 5 | 6 | 4 |
16 | 17 | 14 | 3 | 2 | 1 | 7 | 12 | 10 | 15 | 21 | 20 | 19 | 8 | 5 | 6 | 4 | 9 | 11 | 13 | 18 |
2 | 1 | 7 | 12 | 10 | 15 | 21 | 20 | 19 | 8 | 5 | 6 | 4 | 9 | 11 | 13 | 18 | 16 | 17 | 14 | 3 |
10 | 15 | 21 | 20 | 19 | 8 | 5 | 6 | 4 | 9 | 11 | 13 | 18 | 16 | 17 | 14 | 3 | 2 | 1 | 7 | 12 |
19 | 8 | 5 | 6 | 4 | 9 | 11 | 13 | 18 | 16 | 17 | 14 | 3 | 2 | 1 | 7 | 12 | 10 | 15 | 21 | 20 |
4 | 9 | 11 | 13 | 18 | 16 | 17 | 14 | 3 | 2 | 1 | 7 | 12 | 10 | 15 | 21 | 20 | 19 | 8 | 5 | 6 |
18 | 16 | 17 | 14 | 3 | 2 | 1 | 7 | 12 | 10 | 15 | 21 | 20 | 19 | 8 | 5 | 6 | 4 | 9 | 11 | 13 |
3 | 2 | 1 | 7 | 12 | 10 | 15 | 21 | 20 | 19 | 8 | 5 | 6 | 4 | 9 | 11 | 13 | 18 | 16 | 17 | 14 |
12 | 10 | 15 | 21 | 20 | 19 | 8 | 5 | 6 | 4 | 9 | 11 | 13 | 18 | 16 | 17 | 14 | 3 | 2 | 1 | 7 |
20 | 19 | 8 | 5 | 6 | 4 | 9 | 11 | 13 | 18 | 16 | 17 | 14 | 3 | 2 | 1 | 7 | 12 | 10 | 15 | 21 |
6 | 4 | 9 | 11 | 13 | 18 | 16 | 17 | 14 | 3 | 2 | 1 | 7 | 12 | 10 | 15 | 21 | 20 | 19 | 8 | 5 |
13 | 18 | 16 | 17 | 14 | 3 | 2 | 1 | 7 | 12 | 10 | 15 | 21 | 20 | 19 | 8 | 5 | 6 | 4 | 9 | 11 |
14 | 3 | 2 | 1 | 7 | 12 | 10 | 15 | 21 | 20 | 19 | 8 | 5 | 6 | 4 | 9 | 11 | 13 | 18 | 16 | 17 |
7 | 12 | 10 | 15 | 21 | 20 | 19 | 8 | 5 | 6 | 4 | 9 | 11 | 13 | 18 | 16 | 17 | 14 | 3 | 2 | 1 |
21 | 20 | 19 | 8 | 5 | 6 | 4 | 9 | 11 | 13 | 18 | 16 | 17 | 14 | 3 | 2 | 1 | 7 | 12 | 10 | 15 |
5 | 6 | 4 | 9 | 11 | 13 | 18 | 16 | 17 | 14 | 3 | 2 | 1 | 7 | 12 | 10 | 15 | 21 | 20 | 19 | 8 |
11 | 13 | 18 | 16 | 17 | 14 | 3 | 2 | 1 | 7 | 12 | 10 | 15 | 21 | 20 | 19 | 8 | 5 | 6 | 4 | 9 |
17 | 14 | 3 | 2 | 1 | 7 | 12 | 10 | 15 | 21 | 20 | 19 | 8 | 5 | 6 | 4 | 9 | 11 | 13 | 18 | 16 |
1 | 7 | 12 | 10 | 15 | 21 | 20 | 19 | 8 | 5 | 6 | 4 | 9 | 11 | 13 | 18 | 16 | 17 | 14 | 3 | 2 |
= 21x21 panmagic square
15 | 357 | 230 | 103 | 428 | 131 | 279 | 256 | 114 | 410 | 244 | 60 | 373 | 80 | 392 | 192 | 23 | 316 | 175 | 159 | 304 |
134 | 278 | 258 | 109 | 408 | 242 | 55 | 375 | 79 | 395 | 203 | 24 | 317 | 169 | 154 | 306 | 10 | 351 | 231 | 104 | 439 |
240 | 53 | 370 | 81 | 394 | 206 | 35 | 318 | 170 | 148 | 301 | 12 | 346 | 225 | 105 | 440 | 145 | 281 | 257 | 111 | 403 |
205 | 38 | 329 | 171 | 149 | 295 | 7 | 348 | 220 | 99 | 441 | 146 | 292 | 260 | 110 | 405 | 235 | 51 | 368 | 76 | 396 |
296 | 1 | 343 | 222 | 94 | 435 | 147 | 293 | 271 | 113 | 404 | 237 | 46 | 366 | 74 | 391 | 207 | 37 | 332 | 182 | 150 |
430 | 141 | 294 | 272 | 124 | 407 | 236 | 48 | 361 | 72 | 389 | 202 | 39 | 331 | 185 | 161 | 297 | 2 | 337 | 217 | 96 |
418 | 239 | 47 | 363 | 67 | 387 | 200 | 34 | 333 | 184 | 164 | 308 | 3 | 338 | 211 | 91 | 432 | 136 | 288 | 273 | 125 |
382 | 198 | 32 | 328 | 186 | 163 | 311 | 14 | 339 | 212 | 85 | 427 | 138 | 283 | 267 | 126 | 419 | 250 | 50 | 362 | 69 |
165 | 310 | 17 | 350 | 213 | 86 | 421 | 133 | 285 | 262 | 120 | 420 | 251 | 61 | 365 | 68 | 384 | 193 | 30 | 326 | 181 |
87 | 422 | 127 | 280 | 264 | 115 | 414 | 252 | 62 | 376 | 71 | 383 | 195 | 25 | 324 | 179 | 160 | 312 | 16 | 353 | 224 |
117 | 409 | 246 | 63 | 377 | 82 | 386 | 194 | 27 | 319 | 177 | 158 | 307 | 18 | 352 | 227 | 98 | 423 | 128 | 274 | 259 |
83 | 397 | 197 | 26 | 321 | 172 | 156 | 305 | 13 | 354 | 226 | 101 | 434 | 129 | 275 | 253 | 112 | 411 | 241 | 57 | 378 |
174 | 151 | 303 | 11 | 349 | 228 | 100 | 437 | 140 | 276 | 254 | 106 | 406 | 243 | 52 | 372 | 84 | 398 | 208 | 29 | 320 |
223 | 102 | 436 | 143 | 287 | 255 | 107 | 400 | 238 | 54 | 367 | 78 | 399 | 209 | 40 | 323 | 173 | 153 | 298 | 9 | 347 |
266 | 108 | 401 | 232 | 49 | 369 | 73 | 393 | 210 | 41 | 334 | 176 | 152 | 300 | 4 | 345 | 221 | 97 | 438 | 142 | 290 |
364 | 75 | 388 | 204 | 42 | 335 | 187 | 155 | 299 | 6 | 340 | 219 | 95 | 433 | 144 | 289 | 269 | 119 | 402 | 233 | 43 |
336 | 188 | 166 | 302 | 5 | 342 | 214 | 93 | 431 | 139 | 291 | 268 | 122 | 413 | 234 | 44 | 358 | 70 | 390 | 199 | 36 |
341 | 216 | 88 | 429 | 137 | 286 | 270 | 121 | 416 | 245 | 45 | 359 | 64 | 385 | 201 | 31 | 330 | 189 | 167 | 313 | 8 |
284 | 265 | 123 | 415 | 248 | 56 | 360 | 65 | 379 | 196 | 33 | 325 | 183 | 168 | 314 | 19 | 344 | 215 | 90 | 424 | 135 |
59 | 371 | 66 | 380 | 190 | 28 | 327 | 178 | 162 | 315 | 20 | 355 | 218 | 89 | 426 | 130 | 282 | 263 | 118 | 417 | 247 |
22 | 322 | 180 | 157 | 309 | 21 | 356 | 229 | 92 | 425 | 132 | 277 | 261 | 116 | 412 | 249 | 58 | 374 | 77 | 381 | 191 |
Use the shift method to construct magic squares of odd order from 5x5 to infinity.
See 5x5, 7x7, 9x9 (1), 9x9 (2), 11x11, 13x13, 15x15 (1), 15x15 (2), 17x17, 19x19, 21x21 (1), 21x21 (2), 23x23, 25x25, 27x27 (1), 27x27 (2), 29x29 and 31x31