Look how René Chrétien used reflecting grids to produce a 22x22 magic square. Notify that the second (column) grid is a reflection of the first (row) grid.
1x number + 1
0 | 1 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 20 | 21 |
0 | 1 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 20 | 21 |
0 | 1 | 2 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 19 | 20 | 21 |
21 | 1 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 20 | 0 |
21 | 20 | 2 | 3 | 17 | 16 | 15 | 7 | 13 | 12 | 11 | 10 | 9 | 8 | 14 | 6 | 5 | 4 | 18 | 19 | 1 | 0 |
21 | 20 | 2 | 3 | 4 | 16 | 6 | 7 | 13 | 12 | 11 | 10 | 9 | 8 | 14 | 15 | 5 | 17 | 18 | 19 | 1 | 0 |
21 | 20 | 2 | 3 | 4 | 5 | 6 | 7 | 13 | 12 | 10 | 11 | 9 | 8 | 14 | 15 | 16 | 17 | 18 | 19 | 1 | 0 |
0 | 20 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1 | 21 |
0 | 20 | 19 | 18 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 3 | 2 | 1 | 21 |
0 | 20 | 19 | 18 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 3 | 2 | 1 | 21 |
0 | 1 | 19 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 2 | 20 | 21 |
21 | 1 | 2 | 3 | 17 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 4 | 18 | 19 | 20 | 0 |
21 | 20 | 2 | 18 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 3 | 19 | 1 | 0 |
0 | 20 | 19 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 2 | 1 | 21 |
21 | 20 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1 | 0 |
21 | 20 | 2 | 3 | 4 | 5 | 6 | 14 | 8 | 9 | 10 | 11 | 12 | 13 | 7 | 15 | 16 | 17 | 18 | 19 | 1 | 0 |
21 | 20 | 2 | 3 | 4 | 16 | 15 | 14 | 8 | 9 | 10 | 11 | 12 | 13 | 7 | 6 | 5 | 17 | 18 | 19 | 1 | 0 |
21 | 1 | 19 | 3 | 17 | 5 | 15 | 14 | 8 | 9 | 11 | 10 | 12 | 13 | 7 | 6 | 16 | 4 | 18 | 2 | 20 | 0 |
0 | 1 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 20 | 21 |
0 | 1 | 2 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 19 | 20 | 21 |
21 | 1 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 20 | 0 |
0 | 1 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 20 | 21 |
+22x number
0 | 0 | 0 | 21 | 21 | 21 | 21 | 0 | 0 | 0 | 0 | 21 | 21 | 0 | 21 | 21 | 21 | 21 | 0 | 0 | 21 | 0 |
1 | 1 | 1 | 1 | 20 | 20 | 20 | 20 | 20 | 20 | 1 | 1 | 20 | 20 | 20 | 20 | 20 | 1 | 1 | 1 | 1 | 1 |
19 | 19 | 2 | 19 | 2 | 2 | 2 | 2 | 19 | 19 | 19 | 2 | 2 | 19 | 2 | 2 | 2 | 19 | 19 | 2 | 19 | 19 |
18 | 18 | 18 | 18 | 3 | 3 | 3 | 3 | 18 | 18 | 3 | 3 | 18 | 3 | 3 | 3 | 3 | 3 | 18 | 18 | 18 | 18 |
17 | 17 | 17 | 17 | 17 | 4 | 4 | 4 | 4 | 4 | 4 | 17 | 4 | 4 | 4 | 4 | 4 | 17 | 17 | 17 | 17 | 17 |
16 | 16 | 16 | 16 | 16 | 16 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 16 | 5 | 16 | 16 | 16 | 16 |
15 | 15 | 15 | 15 | 15 | 6 | 6 | 6 | 6 | 6 | 15 | 6 | 6 | 6 | 6 | 6 | 6 | 15 | 15 | 15 | 15 | 15 |
14 | 14 | 14 | 14 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 14 | 14 | 14 | 14 | 14 | 14 | 14 |
13 | 13 | 13 | 13 | 13 | 13 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 13 | 13 | 13 | 13 | 13 |
12 | 12 | 12 | 12 | 12 | 12 | 12 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 12 | 12 | 12 | 12 |
11 | 11 | 11 | 11 | 11 | 11 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 11 | 11 | 11 | 11 | 11 |
10 | 10 | 10 | 10 | 10 | 10 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 10 | 10 | 10 | 10 | 10 |
9 | 9 | 9 | 9 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 9 | 9 | 9 | 9 |
8 | 8 | 8 | 8 | 8 | 8 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 8 | 8 | 8 | 8 | 8 |
7 | 7 | 7 | 7 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 14 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
6 | 6 | 6 | 6 | 6 | 15 | 15 | 15 | 15 | 15 | 6 | 15 | 15 | 15 | 15 | 15 | 15 | 6 | 6 | 6 | 6 | 6 |
5 | 5 | 5 | 5 | 5 | 5 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 5 | 16 | 5 | 5 | 5 | 5 |
4 | 4 | 4 | 4 | 4 | 17 | 17 | 17 | 17 | 17 | 17 | 4 | 17 | 17 | 17 | 17 | 17 | 4 | 4 | 4 | 4 | 4 |
3 | 3 | 3 | 3 | 18 | 18 | 18 | 18 | 3 | 3 | 18 | 18 | 3 | 18 | 18 | 18 | 18 | 18 | 3 | 3 | 3 | 3 |
2 | 2 | 19 | 2 | 19 | 19 | 19 | 19 | 2 | 2 | 2 | 19 | 19 | 2 | 19 | 19 | 19 | 2 | 2 | 19 | 2 | 2 |
20 | 20 | 20 | 20 | 1 | 1 | 1 | 1 | 1 | 1 | 20 | 20 | 1 | 1 | 1 | 1 | 1 | 20 | 20 | 20 | 20 | 20 |
21 | 21 | 21 | 0 | 0 | 0 | 0 | 21 | 21 | 21 | 21 | 0 | 0 | 21 | 0 | 0 | 0 | 0 | 21 | 21 | 0 | 21 |
= (simple) 22x22 magic square
1 | 2 | 20 | 481 | 480 | 479 | 478 | 15 | 14 | 13 | 12 | 473 | 472 | 9 | 470 | 469 | 468 | 467 | 4 | 3 | 483 | 22 |
23 | 24 | 42 | 41 | 458 | 457 | 456 | 455 | 454 | 453 | 34 | 33 | 450 | 449 | 448 | 447 | 446 | 27 | 26 | 25 | 43 | 44 |
419 | 420 | 47 | 437 | 62 | 61 | 60 | 59 | 432 | 431 | 430 | 55 | 54 | 427 | 52 | 51 | 50 | 423 | 422 | 64 | 439 | 440 |
418 | 398 | 416 | 415 | 84 | 83 | 82 | 81 | 410 | 409 | 78 | 77 | 406 | 75 | 74 | 73 | 72 | 71 | 400 | 399 | 417 | 397 |
396 | 395 | 377 | 378 | 392 | 105 | 104 | 96 | 102 | 101 | 100 | 385 | 98 | 97 | 103 | 95 | 94 | 379 | 393 | 394 | 376 | 375 |
374 | 373 | 355 | 356 | 357 | 369 | 117 | 118 | 124 | 123 | 122 | 121 | 120 | 119 | 125 | 126 | 358 | 128 | 371 | 372 | 354 | 353 |
352 | 351 | 333 | 334 | 335 | 138 | 139 | 140 | 146 | 145 | 341 | 144 | 142 | 141 | 147 | 148 | 149 | 348 | 349 | 350 | 332 | 331 |
309 | 329 | 311 | 312 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 324 | 325 | 326 | 327 | 328 | 310 | 330 |
287 | 307 | 306 | 305 | 291 | 292 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 304 | 290 | 289 | 288 | 308 |
265 | 285 | 284 | 283 | 269 | 270 | 271 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 268 | 267 | 266 | 286 |
243 | 244 | 262 | 246 | 247 | 248 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 260 | 261 | 245 | 263 | 264 |
242 | 222 | 223 | 224 | 238 | 226 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 225 | 239 | 240 | 241 | 221 |
220 | 219 | 201 | 217 | 203 | 204 | 205 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 202 | 218 | 200 | 199 |
177 | 197 | 196 | 180 | 181 | 182 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 194 | 195 | 179 | 178 | 198 |
176 | 175 | 157 | 158 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 170 | 171 | 172 | 173 | 174 | 156 | 155 |
154 | 153 | 135 | 136 | 137 | 336 | 337 | 345 | 339 | 340 | 143 | 342 | 343 | 344 | 338 | 346 | 347 | 150 | 151 | 152 | 134 | 133 |
132 | 131 | 113 | 114 | 115 | 127 | 368 | 367 | 361 | 362 | 363 | 364 | 365 | 366 | 360 | 359 | 116 | 370 | 129 | 130 | 112 | 111 |
110 | 90 | 108 | 92 | 106 | 380 | 390 | 389 | 383 | 384 | 386 | 99 | 387 | 388 | 382 | 381 | 391 | 93 | 107 | 91 | 109 | 89 |
67 | 68 | 86 | 85 | 414 | 413 | 412 | 411 | 80 | 79 | 408 | 407 | 76 | 405 | 404 | 403 | 402 | 401 | 70 | 69 | 87 | 88 |
45 | 46 | 421 | 63 | 436 | 435 | 434 | 433 | 58 | 57 | 56 | 429 | 428 | 53 | 426 | 425 | 424 | 49 | 48 | 438 | 65 | 66 |
462 | 442 | 460 | 459 | 40 | 39 | 38 | 37 | 36 | 35 | 452 | 451 | 32 | 31 | 30 | 29 | 28 | 445 | 444 | 443 | 461 | 441 |
463 | 464 | 482 | 19 | 18 | 17 | 16 | 477 | 476 | 475 | 474 | 11 | 10 | 471 | 8 | 7 | 6 | 5 | 466 | 465 | 21 | 484 |
Use the method of reflecting grids (1) to construct magic squares of order is double odd. See 6x6, 10x10, 14x14, 18x18, 22x22, 26x26 en 30x30