Put number 1 in the middle of the top row. Put the numbers 2 up to n (= length of the square) each time one cell diagonal up and to the right. Put number n+1 below number n. Put the numbers n+2 up to 2n each time one cell diagonal up and to the right. Put number 2n+1 below number 2n. Etcetera ...
23x23 symmetric magic square
278 | 303 | 328 | 353 | 378 | 403 | 428 | 453 | 478 | 503 | 528 | 1 | 26 | 51 | 76 | 101 | 126 | 151 | 176 | 201 | 226 | 251 | 276 |
302 | 327 | 352 | 377 | 402 | 427 | 452 | 477 | 502 | 527 | 23 | 25 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | 275 | 277 |
326 | 351 | 376 | 401 | 426 | 451 | 476 | 501 | 526 | 22 | 24 | 49 | 74 | 99 | 124 | 149 | 174 | 199 | 224 | 249 | 274 | 299 | 301 |
350 | 375 | 400 | 425 | 450 | 475 | 500 | 525 | 21 | 46 | 48 | 73 | 98 | 123 | 148 | 173 | 198 | 223 | 248 | 273 | 298 | 300 | 325 |
374 | 399 | 424 | 449 | 474 | 499 | 524 | 20 | 45 | 47 | 72 | 97 | 122 | 147 | 172 | 197 | 222 | 247 | 272 | 297 | 322 | 324 | 349 |
398 | 423 | 448 | 473 | 498 | 523 | 19 | 44 | 69 | 71 | 96 | 121 | 146 | 171 | 196 | 221 | 246 | 271 | 296 | 321 | 323 | 348 | 373 |
422 | 447 | 472 | 497 | 522 | 18 | 43 | 68 | 70 | 95 | 120 | 145 | 170 | 195 | 220 | 245 | 270 | 295 | 320 | 345 | 347 | 372 | 397 |
446 | 471 | 496 | 521 | 17 | 42 | 67 | 92 | 94 | 119 | 144 | 169 | 194 | 219 | 244 | 269 | 294 | 319 | 344 | 346 | 371 | 396 | 421 |
470 | 495 | 520 | 16 | 41 | 66 | 91 | 93 | 118 | 143 | 168 | 193 | 218 | 243 | 268 | 293 | 318 | 343 | 368 | 370 | 395 | 420 | 445 |
494 | 519 | 15 | 40 | 65 | 90 | 115 | 117 | 142 | 167 | 192 | 217 | 242 | 267 | 292 | 317 | 342 | 367 | 369 | 394 | 419 | 444 | 469 |
518 | 14 | 39 | 64 | 89 | 114 | 116 | 141 | 166 | 191 | 216 | 241 | 266 | 291 | 316 | 341 | 366 | 391 | 393 | 418 | 443 | 468 | 493 |
13 | 38 | 63 | 88 | 113 | 138 | 140 | 165 | 190 | 215 | 240 | 265 | 290 | 315 | 340 | 365 | 390 | 392 | 417 | 442 | 467 | 492 | 517 |
37 | 62 | 87 | 112 | 137 | 139 | 164 | 189 | 214 | 239 | 264 | 289 | 314 | 339 | 364 | 389 | 414 | 416 | 441 | 466 | 491 | 516 | 12 |
61 | 86 | 111 | 136 | 161 | 163 | 188 | 213 | 238 | 263 | 288 | 313 | 338 | 363 | 388 | 413 | 415 | 440 | 465 | 490 | 515 | 11 | 36 |
85 | 110 | 135 | 160 | 162 | 187 | 212 | 237 | 262 | 287 | 312 | 337 | 362 | 387 | 412 | 437 | 439 | 464 | 489 | 514 | 10 | 35 | 60 |
109 | 134 | 159 | 184 | 186 | 211 | 236 | 261 | 286 | 311 | 336 | 361 | 386 | 411 | 436 | 438 | 463 | 488 | 513 | 9 | 34 | 59 | 84 |
133 | 158 | 183 | 185 | 210 | 235 | 260 | 285 | 310 | 335 | 360 | 385 | 410 | 435 | 460 | 462 | 487 | 512 | 8 | 33 | 58 | 83 | 108 |
157 | 182 | 207 | 209 | 234 | 259 | 284 | 309 | 334 | 359 | 384 | 409 | 434 | 459 | 461 | 486 | 511 | 7 | 32 | 57 | 82 | 107 | 132 |
181 | 206 | 208 | 233 | 258 | 283 | 308 | 333 | 358 | 383 | 408 | 433 | 458 | 483 | 485 | 510 | 6 | 31 | 56 | 81 | 106 | 131 | 156 |
205 | 230 | 232 | 257 | 282 | 307 | 332 | 357 | 382 | 407 | 432 | 457 | 482 | 484 | 509 | 5 | 30 | 55 | 80 | 105 | 130 | 155 | 180 |
229 | 231 | 256 | 281 | 306 | 331 | 356 | 381 | 406 | 431 | 456 | 481 | 506 | 508 | 4 | 29 | 54 | 79 | 104 | 129 | 154 | 179 | 204 |
253 | 255 | 280 | 305 | 330 | 355 | 380 | 405 | 430 | 455 | 480 | 505 | 507 | 3 | 28 | 53 | 78 | 103 | 128 | 153 | 178 | 203 | 228 |
254 | 279 | 304 | 329 | 354 | 379 | 404 | 429 | 454 | 479 | 504 | 529 | 2 | 27 | 52 | 77 | 102 | 127 | 152 | 177 | 202 | 227 | 252 |
You can use this method to construct magic squares of odd order from 3x3 to infinite and you get a symmetric (but not pan)magic square.
See 3x3, 5x5, 7x7, 9x9, 11x11, 13x13, 15x15, 17x17, 19x19, 21x21, 23x23, 25x25, 27x27, 29x29 and 31x31