Take a panmagic 21x21 square and add 44 to all numbers, so in the 21x21 inlay are the 441 middle numbers from 45 up to 485.
In the border are the 44 lowest (1 up to 44) and the 44 highest (486 up to 529) numbers. Read the explanation on webpage 3x3 in 5x5 & concentric, how to construct the border.
See in the download below how the 23x23 border has been constructed or use the download to puzzle your own border.
The result is:
Ultra 21x21 in 23x23 magic square
24 |
44 |
41 |
40 |
38 |
37 |
34 |
32 |
31 |
23 |
21 |
508 |
510 |
513 |
514 |
517 |
518 |
521 |
522 |
525 |
526 |
528 |
28 |
487 |
45 |
148 |
329 |
444 |
421 |
245 |
213 |
64 |
140 |
318 |
463 |
413 |
234 |
232 |
56 |
129 |
337 |
455 |
402 |
253 |
224 |
43 |
488 |
427 |
378 |
347 |
259 |
189 |
158 |
91 |
441 |
368 |
343 |
273 |
179 |
154 |
105 |
431 |
364 |
357 |
263 |
175 |
168 |
95 |
42 |
491 |
310 |
290 |
111 |
79 |
206 |
384 |
478 |
311 |
279 |
121 |
80 |
195 |
394 |
479 |
300 |
289 |
122 |
69 |
205 |
395 |
468 |
39 |
494 |
60 |
139 |
323 |
459 |
412 |
239 |
228 |
55 |
134 |
333 |
454 |
407 |
249 |
223 |
50 |
144 |
328 |
449 |
417 |
244 |
218 |
36 |
495 |
440 |
366 |
346 |
272 |
177 |
157 |
104 |
429 |
367 |
356 |
261 |
178 |
167 |
93 |
430 |
377 |
345 |
262 |
188 |
156 |
94 |
35 |
497 |
309 |
278 |
124 |
78 |
194 |
397 |
477 |
299 |
292 |
120 |
68 |
208 |
393 |
467 |
313 |
288 |
110 |
82 |
204 |
383 |
481 |
33 |
500 |
54 |
130 |
338 |
453 |
403 |
254 |
222 |
46 |
149 |
327 |
445 |
422 |
243 |
214 |
65 |
138 |
319 |
464 |
411 |
235 |
233 |
30 |
501 |
423 |
379 |
350 |
255 |
190 |
161 |
87 |
442 |
371 |
339 |
274 |
182 |
150 |
106 |
434 |
360 |
358 |
266 |
171 |
169 |
98 |
29 |
503 |
301 |
294 |
116 |
70 |
210 |
389 |
469 |
315 |
284 |
112 |
84 |
200 |
385 |
483 |
305 |
280 |
126 |
74 |
196 |
399 |
473 |
27 |
504 |
58 |
143 |
321 |
457 |
416 |
237 |
226 |
59 |
132 |
331 |
458 |
405 |
247 |
227 |
48 |
142 |
332 |
447 |
415 |
248 |
216 |
26 |
505 |
438 |
370 |
344 |
270 |
181 |
155 |
102 |
433 |
365 |
354 |
265 |
176 |
165 |
97 |
428 |
375 |
349 |
260 |
186 |
160 |
92 |
25 |
19 |
314 |
282 |
115 |
83 |
198 |
388 |
482 |
303 |
283 |
125 |
72 |
199 |
398 |
471 |
304 |
293 |
114 |
73 |
209 |
387 |
472 |
511 |
18 |
57 |
131 |
334 |
456 |
404 |
250 |
225 |
47 |
145 |
330 |
446 |
418 |
246 |
215 |
61 |
141 |
320 |
460 |
414 |
236 |
229 |
512 |
15 |
432 |
361 |
359 |
264 |
172 |
170 |
96 |
424 |
380 |
348 |
256 |
191 |
159 |
88 |
443 |
369 |
340 |
275 |
180 |
151 |
107 |
515 |
14 |
297 |
295 |
119 |
66 |
211 |
392 |
465 |
316 |
287 |
108 |
85 |
203 |
381 |
484 |
308 |
276 |
127 |
77 |
192 |
400 |
476 |
516 |
11 |
49 |
147 |
326 |
448 |
420 |
242 |
217 |
63 |
137 |
322 |
462 |
410 |
238 |
231 |
53 |
133 |
336 |
452 |
406 |
252 |
221 |
519 |
10 |
436 |
374 |
342 |
268 |
185 |
153 |
100 |
437 |
363 |
352 |
269 |
174 |
163 |
101 |
426 |
373 |
353 |
258 |
184 |
164 |
90 |
520 |
7 |
312 |
286 |
113 |
81 |
202 |
386 |
480 |
307 |
281 |
123 |
76 |
197 |
396 |
475 |
302 |
291 |
118 |
71 |
207 |
391 |
470 |
523 |
6 |
62 |
135 |
325 |
461 |
408 |
241 |
230 |
51 |
136 |
335 |
450 |
409 |
251 |
219 |
52 |
146 |
324 |
451 |
419 |
240 |
220 |
524 |
3 |
435 |
362 |
355 |
267 |
173 |
166 |
99 |
425 |
376 |
351 |
257 |
187 |
162 |
89 |
439 |
372 |
341 |
271 |
183 |
152 |
103 |
527 |
1 |
306 |
277 |
128 |
75 |
193 |
401 |
474 |
298 |
296 |
117 |
67 |
212 |
390 |
466 |
317 |
285 |
109 |
86 |
201 |
382 |
485 |
529 |
502 |
486 |
489 |
490 |
492 |
493 |
496 |
498 |
499 |
507 |
509 |
22 |
20 |
17 |
16 |
13 |
12 |
9 |
8 |
5 |
4 |
2 |
506 |
You can use this method to construct magic squares of odd order from 5x5 to infinity. See on this website 5x5, 7x7, 9x9, 11x11, 13x13, 15x15, 17x17, 19x19, 21x21, 23x23, 25x25, 27x27, 29x29 & 31x31