See for detailed explanation, webpage pan 4x4 in 6x6
Take a 22x22 magic square and add 46 to all numbers to get the 22x22 inlay and construct the 24x24 border.
The final result is:
22x22 in 24x24 magic square
19 |
2 |
6 |
10 |
13 |
22 |
28 |
35 |
38 |
42 |
45 |
573 |
568 |
565 |
562 |
559 |
556 |
551 |
548 |
546 |
543 |
540 |
533 |
20 |
574 |
68 |
47 |
88 |
48 |
87 |
49 |
86 |
50 |
85 |
66 |
516 |
515 |
514 |
513 |
512 |
510 |
507 |
506 |
505 |
504 |
502 |
69 |
3 |
570 |
521 |
191 |
220 |
270 |
285 |
321 |
357 |
372 |
400 |
152 |
427 |
146 |
429 |
184 |
205 |
227 |
256 |
299 |
307 |
343 |
379 |
56 |
7 |
563 |
498 |
271 |
286 |
322 |
358 |
366 |
192 |
221 |
399 |
426 |
149 |
432 |
147 |
185 |
257 |
300 |
308 |
344 |
373 |
206 |
228 |
79 |
14 |
561 |
520 |
323 |
352 |
367 |
193 |
222 |
272 |
287 |
398 |
119 |
460 |
113 |
462 |
186 |
309 |
338 |
374 |
207 |
229 |
258 |
301 |
57 |
16 |
560 |
499 |
368 |
194 |
223 |
273 |
288 |
317 |
353 |
397 |
114 |
461 |
120 |
459 |
187 |
375 |
208 |
230 |
259 |
302 |
303 |
339 |
78 |
17 |
553 |
519 |
224 |
274 |
282 |
318 |
354 |
369 |
195 |
396 |
464 |
115 |
458 |
117 |
188 |
231 |
260 |
296 |
304 |
340 |
376 |
209 |
58 |
24 |
547 |
500 |
283 |
319 |
355 |
370 |
196 |
225 |
268 |
395 |
457 |
118 |
463 |
116 |
189 |
297 |
305 |
341 |
377 |
210 |
232 |
254 |
77 |
30 |
544 |
518 |
356 |
371 |
197 |
219 |
269 |
284 |
320 |
394 |
431 |
148 |
425 |
150 |
190 |
342 |
378 |
211 |
226 |
255 |
298 |
306 |
59 |
33 |
541 |
501 |
416 |
415 |
414 |
413 |
412 |
411 |
410 |
176 |
145 |
430 |
89 |
428 |
168 |
175 |
174 |
173 |
172 |
171 |
170 |
408 |
76 |
36 |
538 |
517 |
111 |
468 |
127 |
452 |
121 |
454 |
105 |
470 |
159 |
420 |
153 |
422 |
478 |
103 |
135 |
444 |
129 |
446 |
476 |
97 |
60 |
39 |
536 |
503 |
106 |
469 |
122 |
453 |
128 |
451 |
112 |
467 |
154 |
421 |
160 |
419 |
475 |
98 |
130 |
445 |
136 |
443 |
477 |
104 |
74 |
41 |
1 |
51 |
472 |
107 |
456 |
123 |
450 |
125 |
466 |
109 |
424 |
155 |
418 |
157 |
101 |
480 |
448 |
131 |
442 |
133 |
99 |
474 |
526 |
576 |
5 |
84 |
465 |
110 |
449 |
126 |
455 |
124 |
471 |
100 |
417 |
158 |
423 |
156 |
108 |
473 |
441 |
134 |
447 |
132 |
102 |
479 |
493 |
572 |
8 |
52 |
161 |
162 |
163 |
164 |
165 |
166 |
167 |
409 |
95 |
484 |
151 |
486 |
401 |
402 |
403 |
404 |
405 |
406 |
407 |
169 |
525 |
569 |
11 |
83 |
212 |
241 |
263 |
292 |
314 |
336 |
365 |
177 |
90 |
485 |
96 |
483 |
393 |
198 |
234 |
249 |
278 |
328 |
350 |
386 |
494 |
566 |
23 |
53 |
264 |
293 |
315 |
337 |
359 |
213 |
242 |
178 |
143 |
436 |
137 |
438 |
392 |
250 |
279 |
329 |
351 |
380 |
199 |
235 |
524 |
554 |
25 |
82 |
316 |
331 |
360 |
214 |
243 |
265 |
294 |
179 |
138 |
437 |
144 |
435 |
391 |
330 |
345 |
381 |
200 |
236 |
251 |
280 |
495 |
552 |
27 |
54 |
361 |
215 |
244 |
266 |
295 |
310 |
332 |
180 |
440 |
139 |
434 |
141 |
390 |
382 |
201 |
237 |
252 |
281 |
324 |
346 |
523 |
550 |
32 |
81 |
245 |
267 |
289 |
311 |
333 |
362 |
216 |
181 |
433 |
142 |
439 |
140 |
389 |
238 |
253 |
275 |
325 |
347 |
383 |
202 |
496 |
545 |
40 |
55 |
290 |
312 |
334 |
363 |
217 |
246 |
261 |
182 |
488 |
91 |
482 |
93 |
388 |
276 |
326 |
348 |
384 |
203 |
239 |
247 |
522 |
537 |
43 |
80 |
335 |
364 |
218 |
240 |
262 |
291 |
313 |
183 |
481 |
94 |
487 |
92 |
387 |
349 |
385 |
204 |
233 |
248 |
277 |
327 |
497 |
534 |
46 |
508 |
530 |
489 |
529 |
490 |
528 |
491 |
527 |
492 |
511 |
61 |
62 |
63 |
64 |
65 |
67 |
70 |
71 |
72 |
73 |
75 |
509 |
531 |
557 |
575 |
571 |
567 |
564 |
555 |
549 |
542 |
539 |
535 |
532 |
4 |
9 |
12 |
15 |
18 |
21 |
26 |
29 |
31 |
34 |
37 |
44 |
558 |
Use this method to construct inlaid magic squares of even order. See 6x6, 8x8, 10x10, 12x12, 14x14, 16x16, 18x18, 20x20, 22x22, 24x24, 26x26, 28x28, 30x30 & 32x32