In 2004 Donald Morris discovered (see website http://www.bestfranklinsquares.com/mcm2) the basic key method. The basic key is a 2 x n [n = multiple of 4] magic rectangle. You can use the method to construct magic squares which are a multiple of 4.
See the
basic key to construct a 24x24 most perfect (Franklin pan)magic square:
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Take care that the sum of each column is the highest + lowest number from 1 up to 24 (24 + 1 =) 25.
1 | 2 | 24 | 23 | 3 | 4 | 22 | 21 | 5 | 6 | 20 | 19 | 7 | 8 | 18 | 17 | 9 | 10 | 16 | 15 | 11 | 12 | 14 | 13 |
24 | 23 | 1 | 2 | 22 | 21 | 3 | 4 | 20 | 19 | 5 | 6 | 18 | 17 | 7 | 8 | 16 | 15 | 9 | 10 | 14 | 13 | 11 | 12 |
Copy the two rows to fill the 24x24 square completely.
Take 1x number from first grid
1 | 2 | 24 | 23 | 3 | 4 | 22 | 21 | 5 | 6 | 20 | 19 | 7 | 8 | 18 | 17 | 9 | 10 | 16 | 15 | 11 | 12 | 14 | 13 |
24 | 23 | 1 | 2 | 22 | 21 | 3 | 4 | 20 | 19 | 5 | 6 | 18 | 17 | 7 | 8 | 16 | 15 | 9 | 10 | 14 | 13 | 11 | 12 |
1 | 2 | 24 | 23 | 3 | 4 | 22 | 21 | 5 | 6 | 20 | 19 | 7 | 8 | 18 | 17 | 9 | 10 | 16 | 15 | 11 | 12 | 14 | 13 |
24 | 23 | 1 | 2 | 22 | 21 | 3 | 4 | 20 | 19 | 5 | 6 | 18 | 17 | 7 | 8 | 16 | 15 | 9 | 10 | 14 | 13 | 11 | 12 |
1 | 2 | 24 | 23 | 3 | 4 | 22 | 21 | 5 | 6 | 20 | 19 | 7 | 8 | 18 | 17 | 9 | 10 | 16 | 15 | 11 | 12 | 14 | 13 |
24 | 23 | 1 | 2 | 22 | 21 | 3 | 4 | 20 | 19 | 5 | 6 | 18 | 17 | 7 | 8 | 16 | 15 | 9 | 10 | 14 | 13 | 11 | 12 |
1 | 2 | 24 | 23 | 3 | 4 | 22 | 21 | 5 | 6 | 20 | 19 | 7 | 8 | 18 | 17 | 9 | 10 | 16 | 15 | 11 | 12 | 14 | 13 |
24 | 23 | 1 | 2 | 22 | 21 | 3 | 4 | 20 | 19 | 5 | 6 | 18 | 17 | 7 | 8 | 16 | 15 | 9 | 10 | 14 | 13 | 11 | 12 |
1 | 2 | 24 | 23 | 3 | 4 | 22 | 21 | 5 | 6 | 20 | 19 | 7 | 8 | 18 | 17 | 9 | 10 | 16 | 15 | 11 | 12 | 14 | 13 |
24 | 23 | 1 | 2 | 22 | 21 | 3 | 4 | 20 | 19 | 5 | 6 | 18 | 17 | 7 | 8 | 16 | 15 | 9 | 10 | 14 | 13 | 11 | 12 |
1 | 2 | 24 | 23 | 3 | 4 | 22 | 21 | 5 | 6 | 20 | 19 | 7 | 8 | 18 | 17 | 9 | 10 | 16 | 15 | 11 | 12 | 14 | 13 |
24 | 23 | 1 | 2 | 22 | 21 | 3 | 4 | 20 | 19 | 5 | 6 | 18 | 17 | 7 | 8 | 16 | 15 | 9 | 10 | 14 | 13 | 11 | 12 |
1 | 2 | 24 | 23 | 3 | 4 | 22 | 21 | 5 | 6 | 20 | 19 | 7 | 8 | 18 | 17 | 9 | 10 | 16 | 15 | 11 | 12 | 14 | 13 |
24 | 23 | 1 | 2 | 22 | 21 | 3 | 4 | 20 | 19 | 5 | 6 | 18 | 17 | 7 | 8 | 16 | 15 | 9 | 10 | 14 | 13 | 11 | 12 |
1 | 2 | 24 | 23 | 3 | 4 | 22 | 21 | 5 | 6 | 20 | 19 | 7 | 8 | 18 | 17 | 9 | 10 | 16 | 15 | 11 | 12 | 14 | 13 |
24 | 23 | 1 | 2 | 22 | 21 | 3 | 4 | 20 | 19 | 5 | 6 | 18 | 17 | 7 | 8 | 16 | 15 | 9 | 10 | 14 | 13 | 11 | 12 |
1 | 2 | 24 | 23 | 3 | 4 | 22 | 21 | 5 | 6 | 20 | 19 | 7 | 8 | 18 | 17 | 9 | 10 | 16 | 15 | 11 | 12 | 14 | 13 |
24 | 23 | 1 | 2 | 22 | 21 | 3 | 4 | 20 | 19 | 5 | 6 | 18 | 17 | 7 | 8 | 16 | 15 | 9 | 10 | 14 | 13 | 11 | 12 |
1 | 2 | 24 | 23 | 3 | 4 | 22 | 21 | 5 | 6 | 20 | 19 | 7 | 8 | 18 | 17 | 9 | 10 | 16 | 15 | 11 | 12 | 14 | 13 |
24 | 23 | 1 | 2 | 22 | 21 | 3 | 4 | 20 | 19 | 5 | 6 | 18 | 17 | 7 | 8 | 16 | 15 | 9 | 10 | 14 | 13 | 11 | 12 |
1 | 2 | 24 | 23 | 3 | 4 | 22 | 21 | 5 | 6 | 20 | 19 | 7 | 8 | 18 | 17 | 9 | 10 | 16 | 15 | 11 | 12 | 14 | 13 |
24 | 23 | 1 | 2 | 22 | 21 | 3 | 4 | 20 | 19 | 5 | 6 | 18 | 17 | 7 | 8 | 16 | 15 | 9 | 10 | 14 | 13 | 11 | 12 |
1 | 2 | 24 | 23 | 3 | 4 | 22 | 21 | 5 | 6 | 20 | 19 | 7 | 8 | 18 | 17 | 9 | 10 | 16 | 15 | 11 | 12 | 14 | 13 |
24 | 23 | 1 | 2 | 22 | 21 | 3 | 4 | 20 | 19 | 5 | 6 | 18 | 17 | 7 | 8 | 16 | 15 | 9 | 10 | 14 | 13 | 11 | 12 |
+ 24x [number -/- 1] from second grid (= reflection of first grid)
1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 |
2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 |
24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 |
23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 |
3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 |
4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 |
22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 |
21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 |
5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 |
6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 |
20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 |
19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 |
7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 |
8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 |
18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 |
17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 |
9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 |
10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 |
16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 |
15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 |
11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 |
12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 |
14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 |
13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 |
= Most perfect 24x24 (Franklin pan)magic square
1 | 554 | 24 | 575 | 3 | 556 | 22 | 573 | 5 | 558 | 20 | 571 | 7 | 560 | 18 | 569 | 9 | 562 | 16 | 567 | 11 | 564 | 14 | 565 |
48 | 551 | 25 | 530 | 46 | 549 | 27 | 532 | 44 | 547 | 29 | 534 | 42 | 545 | 31 | 536 | 40 | 543 | 33 | 538 | 38 | 541 | 35 | 540 |
553 | 2 | 576 | 23 | 555 | 4 | 574 | 21 | 557 | 6 | 572 | 19 | 559 | 8 | 570 | 17 | 561 | 10 | 568 | 15 | 563 | 12 | 566 | 13 |
552 | 47 | 529 | 26 | 550 | 45 | 531 | 28 | 548 | 43 | 533 | 30 | 546 | 41 | 535 | 32 | 544 | 39 | 537 | 34 | 542 | 37 | 539 | 36 |
49 | 506 | 72 | 527 | 51 | 508 | 70 | 525 | 53 | 510 | 68 | 523 | 55 | 512 | 66 | 521 | 57 | 514 | 64 | 519 | 59 | 516 | 62 | 517 |
96 | 503 | 73 | 482 | 94 | 501 | 75 | 484 | 92 | 499 | 77 | 486 | 90 | 497 | 79 | 488 | 88 | 495 | 81 | 490 | 86 | 493 | 83 | 492 |
505 | 50 | 528 | 71 | 507 | 52 | 526 | 69 | 509 | 54 | 524 | 67 | 511 | 56 | 522 | 65 | 513 | 58 | 520 | 63 | 515 | 60 | 518 | 61 |
504 | 95 | 481 | 74 | 502 | 93 | 483 | 76 | 500 | 91 | 485 | 78 | 498 | 89 | 487 | 80 | 496 | 87 | 489 | 82 | 494 | 85 | 491 | 84 |
97 | 458 | 120 | 479 | 99 | 460 | 118 | 477 | 101 | 462 | 116 | 475 | 103 | 464 | 114 | 473 | 105 | 466 | 112 | 471 | 107 | 468 | 110 | 469 |
144 | 455 | 121 | 434 | 142 | 453 | 123 | 436 | 140 | 451 | 125 | 438 | 138 | 449 | 127 | 440 | 136 | 447 | 129 | 442 | 134 | 445 | 131 | 444 |
457 | 98 | 480 | 119 | 459 | 100 | 478 | 117 | 461 | 102 | 476 | 115 | 463 | 104 | 474 | 113 | 465 | 106 | 472 | 111 | 467 | 108 | 470 | 109 |
456 | 143 | 433 | 122 | 454 | 141 | 435 | 124 | 452 | 139 | 437 | 126 | 450 | 137 | 439 | 128 | 448 | 135 | 441 | 130 | 446 | 133 | 443 | 132 |
145 | 410 | 168 | 431 | 147 | 412 | 166 | 429 | 149 | 414 | 164 | 427 | 151 | 416 | 162 | 425 | 153 | 418 | 160 | 423 | 155 | 420 | 158 | 421 |
192 | 407 | 169 | 386 | 190 | 405 | 171 | 388 | 188 | 403 | 173 | 390 | 186 | 401 | 175 | 392 | 184 | 399 | 177 | 394 | 182 | 397 | 179 | 396 |
409 | 146 | 432 | 167 | 411 | 148 | 430 | 165 | 413 | 150 | 428 | 163 | 415 | 152 | 426 | 161 | 417 | 154 | 424 | 159 | 419 | 156 | 422 | 157 |
408 | 191 | 385 | 170 | 406 | 189 | 387 | 172 | 404 | 187 | 389 | 174 | 402 | 185 | 391 | 176 | 400 | 183 | 393 | 178 | 398 | 181 | 395 | 180 |
193 | 362 | 216 | 383 | 195 | 364 | 214 | 381 | 197 | 366 | 212 | 379 | 199 | 368 | 210 | 377 | 201 | 370 | 208 | 375 | 203 | 372 | 206 | 373 |
240 | 359 | 217 | 338 | 238 | 357 | 219 | 340 | 236 | 355 | 221 | 342 | 234 | 353 | 223 | 344 | 232 | 351 | 225 | 346 | 230 | 349 | 227 | 348 |
361 | 194 | 384 | 215 | 363 | 196 | 382 | 213 | 365 | 198 | 380 | 211 | 367 | 200 | 378 | 209 | 369 | 202 | 376 | 207 | 371 | 204 | 374 | 205 |
360 | 239 | 337 | 218 | 358 | 237 | 339 | 220 | 356 | 235 | 341 | 222 | 354 | 233 | 343 | 224 | 352 | 231 | 345 | 226 | 350 | 229 | 347 | 228 |
241 | 314 | 264 | 335 | 243 | 316 | 262 | 333 | 245 | 318 | 260 | 331 | 247 | 320 | 258 | 329 | 249 | 322 | 256 | 327 | 251 | 324 | 254 | 325 |
288 | 311 | 265 | 290 | 286 | 309 | 267 | 292 | 284 | 307 | 269 | 294 | 282 | 305 | 271 | 296 | 280 | 303 | 273 | 298 | 278 | 301 | 275 | 300 |
313 | 242 | 336 | 263 | 315 | 244 | 334 | 261 | 317 | 246 | 332 | 259 | 319 | 248 | 330 | 257 | 321 | 250 | 328 | 255 | 323 | 252 | 326 | 253 |
312 | 287 | 289 | 266 | 310 | 285 | 291 | 268 | 308 | 283 | 293 | 270 | 306 | 281 | 295 | 272 | 304 | 279 | 297 | 274 | 302 | 277 | 299 | 276 |
Use this method to construct most perfect magic squares of order is multiple of 4 from 4x4 to infinity. See 4x4, 8x8, 12x12, 16x16, 20x20, 24x24, 28x28, 32x32