Use as first grid 32x a 3x3 magic square and 32x the inverse of the 3x3 magic square (= 1+9 -/- number from the original 3x3 magic square) and as second grid a '3x3 blown up' version of the 8x8 most perfect magic square to construct a composite 24x24 [pan]magic square with special magic features.
Take a number from a cell of the first grid and add (number -/- 1) x 9 from the same cell of the second grid.
1x number
2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 |
7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 |
6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 |
8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 |
3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 |
4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 |
8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 |
3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 |
4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 |
2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 |
7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 |
6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 |
2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 |
7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 |
6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 |
8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 |
3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 |
4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 |
8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 |
3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 |
4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 |
2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 | 2 | 9 | 4 | 8 | 1 | 6 |
7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 | 7 | 5 | 3 | 3 | 5 | 7 |
6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 | 6 | 1 | 8 | 4 | 9 | 2 |
+ (number -/- 1) x 9
1 | 1 | 1 | 56 | 56 | 56 | 29 | 29 | 29 | 44 | 44 | 44 | 17 | 17 | 17 | 40 | 40 | 40 | 13 | 13 | 13 | 60 | 60 | 60 |
1 | 1 | 1 | 56 | 56 | 56 | 29 | 29 | 29 | 44 | 44 | 44 | 17 | 17 | 17 | 40 | 40 | 40 | 13 | 13 | 13 | 60 | 60 | 60 |
1 | 1 | 1 | 56 | 56 | 56 | 29 | 29 | 29 | 44 | 44 | 44 | 17 | 17 | 17 | 40 | 40 | 40 | 13 | 13 | 13 | 60 | 60 | 60 |
63 | 63 | 63 | 10 | 10 | 10 | 35 | 35 | 35 | 22 | 22 | 22 | 47 | 47 | 47 | 26 | 26 | 26 | 51 | 51 | 51 | 6 | 6 | 6 |
63 | 63 | 63 | 10 | 10 | 10 | 35 | 35 | 35 | 22 | 22 | 22 | 47 | 47 | 47 | 26 | 26 | 26 | 51 | 51 | 51 | 6 | 6 | 6 |
63 | 63 | 63 | 10 | 10 | 10 | 35 | 35 | 35 | 22 | 22 | 22 | 47 | 47 | 47 | 26 | 26 | 26 | 51 | 51 | 51 | 6 | 6 | 6 |
36 | 36 | 36 | 21 | 21 | 21 | 64 | 64 | 64 | 9 | 9 | 9 | 52 | 52 | 52 | 5 | 5 | 5 | 48 | 48 | 48 | 25 | 25 | 25 |
36 | 36 | 36 | 21 | 21 | 21 | 64 | 64 | 64 | 9 | 9 | 9 | 52 | 52 | 52 | 5 | 5 | 5 | 48 | 48 | 48 | 25 | 25 | 25 |
36 | 36 | 36 | 21 | 21 | 21 | 64 | 64 | 64 | 9 | 9 | 9 | 52 | 52 | 52 | 5 | 5 | 5 | 48 | 48 | 48 | 25 | 25 | 25 |
30 | 30 | 30 | 43 | 43 | 43 | 2 | 2 | 2 | 55 | 55 | 55 | 14 | 14 | 14 | 59 | 59 | 59 | 18 | 18 | 18 | 39 | 39 | 39 |
30 | 30 | 30 | 43 | 43 | 43 | 2 | 2 | 2 | 55 | 55 | 55 | 14 | 14 | 14 | 59 | 59 | 59 | 18 | 18 | 18 | 39 | 39 | 39 |
30 | 30 | 30 | 43 | 43 | 43 | 2 | 2 | 2 | 55 | 55 | 55 | 14 | 14 | 14 | 59 | 59 | 59 | 18 | 18 | 18 | 39 | 39 | 39 |
33 | 33 | 33 | 24 | 24 | 24 | 61 | 61 | 61 | 12 | 12 | 12 | 49 | 49 | 49 | 8 | 8 | 8 | 45 | 45 | 45 | 28 | 28 | 28 |
33 | 33 | 33 | 24 | 24 | 24 | 61 | 61 | 61 | 12 | 12 | 12 | 49 | 49 | 49 | 8 | 8 | 8 | 45 | 45 | 45 | 28 | 28 | 28 |
33 | 33 | 33 | 24 | 24 | 24 | 61 | 61 | 61 | 12 | 12 | 12 | 49 | 49 | 49 | 8 | 8 | 8 | 45 | 45 | 45 | 28 | 28 | 28 |
31 | 31 | 31 | 42 | 42 | 42 | 3 | 3 | 3 | 54 | 54 | 54 | 15 | 15 | 15 | 58 | 58 | 58 | 19 | 19 | 19 | 38 | 38 | 38 |
31 | 31 | 31 | 42 | 42 | 42 | 3 | 3 | 3 | 54 | 54 | 54 | 15 | 15 | 15 | 58 | 58 | 58 | 19 | 19 | 19 | 38 | 38 | 38 |
31 | 31 | 31 | 42 | 42 | 42 | 3 | 3 | 3 | 54 | 54 | 54 | 15 | 15 | 15 | 58 | 58 | 58 | 19 | 19 | 19 | 38 | 38 | 38 |
4 | 4 | 4 | 53 | 53 | 53 | 32 | 32 | 32 | 41 | 41 | 41 | 20 | 20 | 20 | 37 | 37 | 37 | 16 | 16 | 16 | 57 | 57 | 57 |
4 | 4 | 4 | 53 | 53 | 53 | 32 | 32 | 32 | 41 | 41 | 41 | 20 | 20 | 20 | 37 | 37 | 37 | 16 | 16 | 16 | 57 | 57 | 57 |
4 | 4 | 4 | 53 | 53 | 53 | 32 | 32 | 32 | 41 | 41 | 41 | 20 | 20 | 20 | 37 | 37 | 37 | 16 | 16 | 16 | 57 | 57 | 57 |
62 | 62 | 62 | 11 | 11 | 11 | 34 | 34 | 34 | 23 | 23 | 23 | 46 | 46 | 46 | 27 | 27 | 27 | 50 | 50 | 50 | 7 | 7 | 7 |
62 | 62 | 62 | 11 | 11 | 11 | 34 | 34 | 34 | 23 | 23 | 23 | 46 | 46 | 46 | 27 | 27 | 27 | 50 | 50 | 50 | 7 | 7 | 7 |
62 | 62 | 62 | 11 | 11 | 11 | 34 | 34 | 34 | 23 | 23 | 23 | 46 | 46 | 46 | 27 | 27 | 27 | 50 | 50 | 50 | 7 | 7 | 7 |
= composite 20x20 panmagic square
2 | 9 | 4 | 503 | 496 | 501 | 254 | 261 | 256 | 395 | 388 | 393 | 146 | 153 | 148 | 359 | 352 | 357 | 110 | 117 | 112 | 539 | 532 | 537 |
7 | 5 | 3 | 498 | 500 | 502 | 259 | 257 | 255 | 390 | 392 | 394 | 151 | 149 | 147 | 354 | 356 | 358 | 115 | 113 | 111 | 534 | 536 | 538 |
6 | 1 | 8 | 499 | 504 | 497 | 258 | 253 | 260 | 391 | 396 | 389 | 150 | 145 | 152 | 355 | 360 | 353 | 114 | 109 | 116 | 535 | 540 | 533 |
566 | 559 | 564 | 83 | 90 | 85 | 314 | 307 | 312 | 191 | 198 | 193 | 422 | 415 | 420 | 227 | 234 | 229 | 458 | 451 | 456 | 47 | 54 | 49 |
561 | 563 | 565 | 88 | 86 | 84 | 309 | 311 | 313 | 196 | 194 | 192 | 417 | 419 | 421 | 232 | 230 | 228 | 453 | 455 | 457 | 52 | 50 | 48 |
562 | 567 | 560 | 87 | 82 | 89 | 310 | 315 | 308 | 195 | 190 | 197 | 418 | 423 | 416 | 231 | 226 | 233 | 454 | 459 | 452 | 51 | 46 | 53 |
323 | 316 | 321 | 182 | 189 | 184 | 575 | 568 | 573 | 74 | 81 | 76 | 467 | 460 | 465 | 38 | 45 | 40 | 431 | 424 | 429 | 218 | 225 | 220 |
318 | 320 | 322 | 187 | 185 | 183 | 570 | 572 | 574 | 79 | 77 | 75 | 462 | 464 | 466 | 43 | 41 | 39 | 426 | 428 | 430 | 223 | 221 | 219 |
319 | 324 | 317 | 186 | 181 | 188 | 571 | 576 | 569 | 78 | 73 | 80 | 463 | 468 | 461 | 42 | 37 | 44 | 427 | 432 | 425 | 222 | 217 | 224 |
263 | 270 | 265 | 386 | 379 | 384 | 11 | 18 | 13 | 494 | 487 | 492 | 119 | 126 | 121 | 530 | 523 | 528 | 155 | 162 | 157 | 350 | 343 | 348 |
268 | 266 | 264 | 381 | 383 | 385 | 16 | 14 | 12 | 489 | 491 | 493 | 124 | 122 | 120 | 525 | 527 | 529 | 160 | 158 | 156 | 345 | 347 | 349 |
267 | 262 | 269 | 382 | 387 | 380 | 15 | 10 | 17 | 490 | 495 | 488 | 123 | 118 | 125 | 526 | 531 | 524 | 159 | 154 | 161 | 346 | 351 | 344 |
290 | 297 | 292 | 215 | 208 | 213 | 542 | 549 | 544 | 107 | 100 | 105 | 434 | 441 | 436 | 71 | 64 | 69 | 398 | 405 | 400 | 251 | 244 | 249 |
295 | 293 | 291 | 210 | 212 | 214 | 547 | 545 | 543 | 102 | 104 | 106 | 439 | 437 | 435 | 66 | 68 | 70 | 403 | 401 | 399 | 246 | 248 | 250 |
294 | 289 | 296 | 211 | 216 | 209 | 546 | 541 | 548 | 103 | 108 | 101 | 438 | 433 | 440 | 67 | 72 | 65 | 402 | 397 | 404 | 247 | 252 | 245 |
278 | 271 | 276 | 371 | 378 | 373 | 26 | 19 | 24 | 479 | 486 | 481 | 134 | 127 | 132 | 515 | 522 | 517 | 170 | 163 | 168 | 335 | 342 | 337 |
273 | 275 | 277 | 376 | 374 | 372 | 21 | 23 | 25 | 484 | 482 | 480 | 129 | 131 | 133 | 520 | 518 | 516 | 165 | 167 | 169 | 340 | 338 | 336 |
274 | 279 | 272 | 375 | 370 | 377 | 22 | 27 | 20 | 483 | 478 | 485 | 130 | 135 | 128 | 519 | 514 | 521 | 166 | 171 | 164 | 339 | 334 | 341 |
35 | 28 | 33 | 470 | 477 | 472 | 287 | 280 | 285 | 362 | 369 | 364 | 179 | 172 | 177 | 326 | 333 | 328 | 143 | 136 | 141 | 506 | 513 | 508 |
30 | 32 | 34 | 475 | 473 | 471 | 282 | 284 | 286 | 367 | 365 | 363 | 174 | 176 | 178 | 331 | 329 | 327 | 138 | 140 | 142 | 511 | 509 | 507 |
31 | 36 | 29 | 474 | 469 | 476 | 283 | 288 | 281 | 366 | 361 | 368 | 175 | 180 | 173 | 330 | 325 | 332 | 139 | 144 | 137 | 510 | 505 | 512 |
551 | 558 | 553 | 98 | 91 | 96 | 299 | 306 | 301 | 206 | 199 | 204 | 407 | 414 | 409 | 242 | 235 | 240 | 443 | 450 | 445 | 62 | 55 | 60 |
556 | 554 | 552 | 93 | 95 | 97 | 304 | 302 | 300 | 201 | 203 | 205 | 412 | 410 | 408 | 237 | 239 | 241 | 448 | 446 | 444 | 57 | 59 | 61 |
555 | 550 | 557 | 94 | 99 | 92 | 303 | 298 | 305 | 202 | 207 | 200 | 411 | 406 | 413 | 238 | 243 | 236 | 447 | 442 | 449 | 58 | 63 | 56 |
N.B.: Each 1/2 row/column/diagonal gives 1/2 of the magic sum (1/2 x 6924 = 3462).
Paste 1x1 or 2x2 numbers from the same cells from each 3x3 sub-square to construct a panmagic 8x8, respectively 12x12 square. See examples below.
1154 | 1154 | 1154 | 1154 | 1154 | 1154 | 1154 | 1154 | ||||||
1154 | 1154 | 1154 | 1154 | 1154 | 1154 | 1154 | 1154 | ||||||
1154 | 1154 | ||||||||||||
1154 | 1154 | 3 | 502 | 255 | 394 | 147 | 358 | 111 | 538 | 2308 | 2308 | ||
1154 | 1154 | 565 | 84 | 313 | 192 | 421 | 228 | 457 | 48 | 2308 | 2308 | ||
1154 | 1154 | 322 | 183 | 574 | 75 | 466 | 39 | 430 | 219 | 2308 | 2308 | ||
1154 | 1154 | 264 | 385 | 12 | 493 | 120 | 529 | 156 | 349 | 2308 | 2308 | ||
1154 | 1154 | 291 | 214 | 543 | 106 | 435 | 70 | 399 | 250 | 2308 | 2308 | ||
1154 | 1154 | 277 | 372 | 25 | 480 | 133 | 516 | 169 | 336 | 2308 | 2308 | ||
1154 | 1154 | 34 | 471 | 286 | 363 | 178 | 327 | 142 | 507 | 2308 | 2308 | ||
1154 | 1154 | 552 | 97 | 300 | 205 | 408 | 241 | 444 | 61 | ||||
1154 | 1154 |
2308 | 2308 | 2308 | 2308 | 2308 | 2308 | 2308 | 2308 | 2308 | 2308 | 2308 | 2308 | 2308 | 2308 | 2308 | 2308 | ||||||
2308 | 2308 | 2308 | 2308 | 2308 | 2308 | 2308 | 2308 | 2308 | 2308 | 2308 | 2308 | 2308 | 2308 | 2308 | 2308 | ||||||
2308 | 2308 | ||||||||||||||||||||
2308 | 2308 | 2 | 5 | 503 | 500 | 254 | 257 | 395 | 392 | 146 | 149 | 359 | 356 | 110 | 113 | 539 | 536 | ||||
2308 | 2308 | 1 | 8 | 504 | 497 | 253 | 260 | 396 | 389 | 145 | 152 | 360 | 353 | 109 | 116 | 540 | 533 | 4616 | 4616 | ||
2308 | 2308 | 566 | 563 | 83 | 86 | 314 | 311 | 191 | 194 | 422 | 419 | 227 | 230 | 458 | 455 | 47 | 50 | 4616 | 4616 | ||
2308 | 2308 | 567 | 560 | 82 | 89 | 315 | 308 | 190 | 197 | 423 | 416 | 226 | 233 | 459 | 452 | 46 | 53 | 4616 | 4616 | ||
2308 | 2308 | 323 | 320 | 182 | 185 | 575 | 572 | 74 | 77 | 467 | 464 | 38 | 41 | 431 | 428 | 218 | 221 | 4616 | 4616 | ||
2308 | 2308 | 324 | 317 | 181 | 188 | 576 | 569 | 73 | 80 | 468 | 461 | 37 | 44 | 432 | 425 | 217 | 224 | 4616 | 4616 | ||
2308 | 2308 | 263 | 266 | 386 | 383 | 11 | 14 | 494 | 491 | 119 | 122 | 530 | 527 | 155 | 158 | 350 | 347 | 4616 | 4616 | ||
2308 | 2308 | 262 | 269 | 387 | 380 | 10 | 17 | 495 | 488 | 118 | 125 | 531 | 524 | 154 | 161 | 351 | 344 | 4616 | 4616 | ||
2308 | 2308 | 290 | 293 | 215 | 212 | 542 | 545 | 107 | 104 | 434 | 437 | 71 | 68 | 398 | 401 | 251 | 248 | 4616 | 4616 | ||
2308 | 2308 | 289 | 296 | 216 | 209 | 541 | 548 | 108 | 101 | 433 | 440 | 72 | 65 | 397 | 404 | 252 | 245 | 4616 | 4616 | ||
2308 | 2308 | 278 | 275 | 371 | 374 | 26 | 23 | 479 | 482 | 134 | 131 | 515 | 518 | 170 | 167 | 335 | 338 | 4616 | 4616 | ||
2308 | 2308 | 279 | 272 | 370 | 377 | 27 | 20 | 478 | 485 | 135 | 128 | 514 | 521 | 171 | 164 | 334 | 341 | 4616 | 4616 | ||
2308 | 2308 | 35 | 32 | 470 | 473 | 287 | 284 | 362 | 365 | 179 | 176 | 326 | 329 | 143 | 140 | 506 | 509 | 4616 | 4616 | ||
2308 | 2308 | 36 | 29 | 469 | 476 | 288 | 281 | 361 | 368 | 180 | 173 | 325 | 332 | 144 | 137 | 505 | 512 | 4616 | 4616 | ||
2308 | 2308 | 551 | 554 | 98 | 95 | 299 | 302 | 206 | 203 | 407 | 410 | 242 | 239 | 443 | 446 | 62 | 59 | 4616 | 4616 | ||
2308 | 2308 | 550 | 557 | 99 | 92 | 298 | 305 | 207 | 200 | 406 | 413 | 243 | 236 | 442 | 449 | 63 | 56 | 4616 | 4616 | ||
2308 | 2308 |
Use this method to construct magic squares which are a multiple of 4 from 12x12 to infinite. See
12x12, 16x16, 20x20, 24x24a, 24x24b, 28x28, 32x32a and 32x32b