Use 6x6 the same 4x4 Sudoku pattern (as first grid) and a second fixed grid to construct a most perfect magic 24x24 square.
Take 1x number from first grid +1
2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 |
3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 |
0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 |
1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 |
2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 |
3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 |
0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 |
1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 |
2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 |
3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 |
0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 |
1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 |
2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 |
3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 |
0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 |
1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 |
2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 |
3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 |
0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 |
1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 |
2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 |
3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 |
0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 |
1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 |
+ 4x number from second grid
143 | 11 | 132 | 0 | 142 | 10 | 133 | 1 | 141 | 9 | 134 | 2 | 140 | 8 | 135 | 3 | 139 | 7 | 136 | 4 | 138 | 6 | 137 | 5 |
0 | 132 | 11 | 143 | 1 | 133 | 10 | 142 | 2 | 134 | 9 | 141 | 3 | 135 | 8 | 140 | 4 | 136 | 7 | 139 | 5 | 137 | 6 | 138 |
11 | 143 | 0 | 132 | 10 | 142 | 1 | 133 | 9 | 141 | 2 | 134 | 8 | 140 | 3 | 135 | 7 | 139 | 4 | 136 | 6 | 138 | 5 | 137 |
132 | 0 | 143 | 11 | 133 | 1 | 142 | 10 | 134 | 2 | 141 | 9 | 135 | 3 | 140 | 8 | 136 | 4 | 139 | 7 | 137 | 5 | 138 | 6 |
131 | 23 | 120 | 12 | 130 | 22 | 121 | 13 | 129 | 21 | 122 | 14 | 128 | 20 | 123 | 15 | 127 | 19 | 124 | 16 | 126 | 18 | 125 | 17 |
12 | 120 | 23 | 131 | 13 | 121 | 22 | 130 | 14 | 122 | 21 | 129 | 15 | 123 | 20 | 128 | 16 | 124 | 19 | 127 | 17 | 125 | 18 | 126 |
23 | 131 | 12 | 120 | 22 | 130 | 13 | 121 | 21 | 129 | 14 | 122 | 20 | 128 | 15 | 123 | 19 | 127 | 16 | 124 | 18 | 126 | 17 | 125 |
120 | 12 | 131 | 23 | 121 | 13 | 130 | 22 | 122 | 14 | 129 | 21 | 123 | 15 | 128 | 20 | 124 | 16 | 127 | 19 | 125 | 17 | 126 | 18 |
119 | 35 | 108 | 24 | 118 | 34 | 109 | 25 | 117 | 33 | 110 | 26 | 116 | 32 | 111 | 27 | 115 | 31 | 112 | 28 | 114 | 30 | 113 | 29 |
24 | 108 | 35 | 119 | 25 | 109 | 34 | 118 | 26 | 110 | 33 | 117 | 27 | 111 | 32 | 116 | 28 | 112 | 31 | 115 | 29 | 113 | 30 | 114 |
35 | 119 | 24 | 108 | 34 | 118 | 25 | 109 | 33 | 117 | 26 | 110 | 32 | 116 | 27 | 111 | 31 | 115 | 28 | 112 | 30 | 114 | 29 | 113 |
108 | 24 | 119 | 35 | 109 | 25 | 118 | 34 | 110 | 26 | 117 | 33 | 111 | 27 | 116 | 32 | 112 | 28 | 115 | 31 | 113 | 29 | 114 | 30 |
107 | 47 | 96 | 36 | 106 | 46 | 97 | 37 | 105 | 45 | 98 | 38 | 104 | 44 | 99 | 39 | 103 | 43 | 100 | 40 | 102 | 42 | 101 | 41 |
36 | 96 | 47 | 107 | 37 | 97 | 46 | 106 | 38 | 98 | 45 | 105 | 39 | 99 | 44 | 104 | 40 | 100 | 43 | 103 | 41 | 101 | 42 | 102 |
47 | 107 | 36 | 96 | 46 | 106 | 37 | 97 | 45 | 105 | 38 | 98 | 44 | 104 | 39 | 99 | 43 | 103 | 40 | 100 | 42 | 102 | 41 | 101 |
96 | 36 | 107 | 47 | 97 | 37 | 106 | 46 | 98 | 38 | 105 | 45 | 99 | 39 | 104 | 44 | 100 | 40 | 103 | 43 | 101 | 41 | 102 | 42 |
95 | 59 | 84 | 48 | 94 | 58 | 85 | 49 | 93 | 57 | 86 | 50 | 92 | 56 | 87 | 51 | 91 | 55 | 88 | 52 | 90 | 54 | 89 | 53 |
48 | 84 | 59 | 95 | 49 | 85 | 58 | 94 | 50 | 86 | 57 | 93 | 51 | 87 | 56 | 92 | 52 | 88 | 55 | 91 | 53 | 89 | 54 | 90 |
59 | 95 | 48 | 84 | 58 | 94 | 49 | 85 | 57 | 93 | 50 | 86 | 56 | 92 | 51 | 87 | 55 | 91 | 52 | 88 | 54 | 90 | 53 | 89 |
84 | 48 | 95 | 59 | 85 | 49 | 94 | 58 | 86 | 50 | 93 | 57 | 87 | 51 | 92 | 56 | 88 | 52 | 91 | 55 | 89 | 53 | 90 | 54 |
83 | 71 | 72 | 60 | 82 | 70 | 73 | 61 | 81 | 69 | 74 | 62 | 80 | 68 | 75 | 63 | 79 | 67 | 76 | 64 | 78 | 66 | 77 | 65 |
60 | 72 | 71 | 83 | 61 | 73 | 70 | 82 | 62 | 74 | 69 | 81 | 63 | 75 | 68 | 80 | 64 | 76 | 67 | 79 | 65 | 77 | 66 | 78 |
71 | 83 | 60 | 72 | 70 | 82 | 61 | 73 | 69 | 81 | 62 | 74 | 68 | 80 | 63 | 75 | 67 | 79 | 64 | 76 | 66 | 78 | 65 | 77 |
72 | 60 | 83 | 71 | 73 | 61 | 82 | 70 | 74 | 62 | 81 | 69 | 75 | 63 | 80 | 68 | 76 | 64 | 79 | 67 | 77 | 65 | 78 | 66 |
= 24x24 most perfect (Franklin pan)magic square
575 | 46 | 532 | 1 | 571 | 42 | 536 | 5 | 567 | 38 | 540 | 9 | 563 | 34 | 544 | 13 | 559 | 30 | 548 | 17 | 555 | 26 | 552 | 21 |
4 | 529 | 47 | 574 | 8 | 533 | 43 | 570 | 12 | 537 | 39 | 566 | 16 | 541 | 35 | 562 | 20 | 545 | 31 | 558 | 24 | 549 | 27 | 554 |
45 | 576 | 2 | 531 | 41 | 572 | 6 | 535 | 37 | 568 | 10 | 539 | 33 | 564 | 14 | 543 | 29 | 560 | 18 | 547 | 25 | 556 | 22 | 551 |
530 | 3 | 573 | 48 | 534 | 7 | 569 | 44 | 538 | 11 | 565 | 40 | 542 | 15 | 561 | 36 | 546 | 19 | 557 | 32 | 550 | 23 | 553 | 28 |
527 | 94 | 484 | 49 | 523 | 90 | 488 | 53 | 519 | 86 | 492 | 57 | 515 | 82 | 496 | 61 | 511 | 78 | 500 | 65 | 507 | 74 | 504 | 69 |
52 | 481 | 95 | 526 | 56 | 485 | 91 | 522 | 60 | 489 | 87 | 518 | 64 | 493 | 83 | 514 | 68 | 497 | 79 | 510 | 72 | 501 | 75 | 506 |
93 | 528 | 50 | 483 | 89 | 524 | 54 | 487 | 85 | 520 | 58 | 491 | 81 | 516 | 62 | 495 | 77 | 512 | 66 | 499 | 73 | 508 | 70 | 503 |
482 | 51 | 525 | 96 | 486 | 55 | 521 | 92 | 490 | 59 | 517 | 88 | 494 | 63 | 513 | 84 | 498 | 67 | 509 | 80 | 502 | 71 | 505 | 76 |
479 | 142 | 436 | 97 | 475 | 138 | 440 | 101 | 471 | 134 | 444 | 105 | 467 | 130 | 448 | 109 | 463 | 126 | 452 | 113 | 459 | 122 | 456 | 117 |
100 | 433 | 143 | 478 | 104 | 437 | 139 | 474 | 108 | 441 | 135 | 470 | 112 | 445 | 131 | 466 | 116 | 449 | 127 | 462 | 120 | 453 | 123 | 458 |
141 | 480 | 98 | 435 | 137 | 476 | 102 | 439 | 133 | 472 | 106 | 443 | 129 | 468 | 110 | 447 | 125 | 464 | 114 | 451 | 121 | 460 | 118 | 455 |
434 | 99 | 477 | 144 | 438 | 103 | 473 | 140 | 442 | 107 | 469 | 136 | 446 | 111 | 465 | 132 | 450 | 115 | 461 | 128 | 454 | 119 | 457 | 124 |
431 | 190 | 388 | 145 | 427 | 186 | 392 | 149 | 423 | 182 | 396 | 153 | 419 | 178 | 400 | 157 | 415 | 174 | 404 | 161 | 411 | 170 | 408 | 165 |
148 | 385 | 191 | 430 | 152 | 389 | 187 | 426 | 156 | 393 | 183 | 422 | 160 | 397 | 179 | 418 | 164 | 401 | 175 | 414 | 168 | 405 | 171 | 410 |
189 | 432 | 146 | 387 | 185 | 428 | 150 | 391 | 181 | 424 | 154 | 395 | 177 | 420 | 158 | 399 | 173 | 416 | 162 | 403 | 169 | 412 | 166 | 407 |
386 | 147 | 429 | 192 | 390 | 151 | 425 | 188 | 394 | 155 | 421 | 184 | 398 | 159 | 417 | 180 | 402 | 163 | 413 | 176 | 406 | 167 | 409 | 172 |
383 | 238 | 340 | 193 | 379 | 234 | 344 | 197 | 375 | 230 | 348 | 201 | 371 | 226 | 352 | 205 | 367 | 222 | 356 | 209 | 363 | 218 | 360 | 213 |
196 | 337 | 239 | 382 | 200 | 341 | 235 | 378 | 204 | 345 | 231 | 374 | 208 | 349 | 227 | 370 | 212 | 353 | 223 | 366 | 216 | 357 | 219 | 362 |
237 | 384 | 194 | 339 | 233 | 380 | 198 | 343 | 229 | 376 | 202 | 347 | 225 | 372 | 206 | 351 | 221 | 368 | 210 | 355 | 217 | 364 | 214 | 359 |
338 | 195 | 381 | 240 | 342 | 199 | 377 | 236 | 346 | 203 | 373 | 232 | 350 | 207 | 369 | 228 | 354 | 211 | 365 | 224 | 358 | 215 | 361 | 220 |
335 | 286 | 292 | 241 | 331 | 282 | 296 | 245 | 327 | 278 | 300 | 249 | 323 | 274 | 304 | 253 | 319 | 270 | 308 | 257 | 315 | 266 | 312 | 261 |
244 | 289 | 287 | 334 | 248 | 293 | 283 | 330 | 252 | 297 | 279 | 326 | 256 | 301 | 275 | 322 | 260 | 305 | 271 | 318 | 264 | 309 | 267 | 314 |
285 | 336 | 242 | 291 | 281 | 332 | 246 | 295 | 277 | 328 | 250 | 299 | 273 | 324 | 254 | 303 | 269 | 320 | 258 | 307 | 265 | 316 | 262 | 311 |
290 | 243 | 333 | 288 | 294 | 247 | 329 | 284 | 298 | 251 | 325 | 280 | 302 | 255 | 321 | 276 | 306 | 259 | 317 | 272 | 310 | 263 | 313 | 268 |
Use this method to construct most perfect (Franklin pan)magic squares which are a multiple of 4 from 8x8 to infinite. See
8x8, 12x12, 16x16, 20x20, 24x24, 28x28 and 32x32