Take a panmagic 23x23 square and add 48 to all numbers, so in the 23x23 inlay are the 529 middle numbers from 49 up to 577.
In the border are the 48 lowest (1 up to 48) and the 48 highest (578 up to 625) numbers. Read the explanation on webpage 3x3 in 5x5 & concentric, how to construct the border.
See in the download below how the 25x25 border has been constructed or use the download to puzzle your own border.
The result is:
Pan 23x23 in 25x25 magic square
24 |
48 |
45 |
43 |
41 |
40 |
38 |
37 |
34 |
32 |
30 |
25 |
603 |
604 |
607 |
608 |
611 |
612 |
615 |
616 |
619 |
620 |
623 |
624 |
26 |
579 |
49 |
531 |
464 |
419 |
374 |
329 |
284 |
239 |
194 |
149 |
104 |
565 |
543 |
498 |
453 |
408 |
363 |
318 |
273 |
228 |
183 |
138 |
93 |
47 |
580 |
575 |
553 |
486 |
462 |
395 |
350 |
305 |
260 |
215 |
170 |
125 |
80 |
58 |
519 |
474 |
429 |
384 |
339 |
294 |
249 |
204 |
159 |
114 |
46 |
582 |
90 |
68 |
529 |
484 |
417 |
393 |
326 |
281 |
236 |
191 |
146 |
101 |
562 |
540 |
495 |
450 |
405 |
360 |
315 |
270 |
225 |
180 |
135 |
44 |
584 |
111 |
572 |
550 |
505 |
460 |
415 |
348 |
324 |
257 |
212 |
167 |
122 |
77 |
55 |
516 |
471 |
426 |
381 |
336 |
291 |
246 |
201 |
156 |
42 |
587 |
132 |
87 |
65 |
526 |
481 |
436 |
391 |
346 |
279 |
255 |
188 |
143 |
98 |
559 |
537 |
492 |
447 |
402 |
357 |
312 |
267 |
222 |
177 |
39 |
590 |
153 |
108 |
569 |
547 |
502 |
457 |
412 |
367 |
322 |
277 |
210 |
186 |
119 |
74 |
52 |
513 |
468 |
423 |
378 |
333 |
288 |
243 |
198 |
36 |
591 |
174 |
129 |
84 |
62 |
523 |
478 |
433 |
388 |
343 |
298 |
253 |
208 |
141 |
117 |
556 |
534 |
489 |
444 |
399 |
354 |
309 |
264 |
219 |
35 |
593 |
195 |
150 |
105 |
566 |
544 |
499 |
454 |
409 |
364 |
319 |
274 |
229 |
184 |
139 |
72 |
71 |
510 |
465 |
420 |
375 |
330 |
285 |
240 |
33 |
595 |
216 |
171 |
126 |
81 |
59 |
520 |
475 |
430 |
385 |
340 |
295 |
250 |
205 |
160 |
115 |
576 |
532 |
508 |
441 |
396 |
351 |
306 |
261 |
31 |
597 |
237 |
192 |
147 |
102 |
563 |
541 |
496 |
451 |
406 |
361 |
316 |
271 |
226 |
181 |
136 |
91 |
69 |
530 |
463 |
439 |
372 |
327 |
282 |
29 |
598 |
258 |
213 |
168 |
123 |
78 |
56 |
517 |
472 |
427 |
382 |
337 |
292 |
247 |
202 |
157 |
112 |
573 |
551 |
506 |
461 |
394 |
370 |
303 |
28 |
599 |
301 |
234 |
189 |
144 |
99 |
560 |
538 |
493 |
448 |
403 |
358 |
313 |
268 |
223 |
178 |
133 |
88 |
66 |
527 |
482 |
437 |
392 |
325 |
27 |
21 |
323 |
256 |
232 |
165 |
120 |
75 |
53 |
514 |
469 |
424 |
379 |
334 |
289 |
244 |
199 |
154 |
109 |
570 |
548 |
503 |
458 |
413 |
368 |
605 |
20 |
344 |
299 |
254 |
187 |
163 |
96 |
557 |
535 |
490 |
445 |
400 |
355 |
310 |
265 |
220 |
175 |
130 |
85 |
63 |
524 |
479 |
434 |
389 |
606 |
17 |
365 |
320 |
275 |
230 |
185 |
118 |
94 |
50 |
511 |
466 |
421 |
376 |
331 |
286 |
241 |
196 |
151 |
106 |
567 |
545 |
500 |
455 |
410 |
609 |
16 |
386 |
341 |
296 |
251 |
206 |
161 |
116 |
555 |
554 |
487 |
442 |
397 |
352 |
307 |
262 |
217 |
172 |
127 |
82 |
60 |
521 |
476 |
431 |
610 |
13 |
407 |
362 |
317 |
272 |
227 |
182 |
137 |
92 |
70 |
509 |
485 |
418 |
373 |
328 |
283 |
238 |
193 |
148 |
103 |
564 |
542 |
497 |
452 |
613 |
12 |
428 |
383 |
338 |
293 |
248 |
203 |
158 |
113 |
574 |
552 |
507 |
440 |
416 |
349 |
304 |
259 |
214 |
169 |
124 |
79 |
57 |
518 |
473 |
614 |
9 |
449 |
404 |
359 |
314 |
269 |
224 |
179 |
134 |
89 |
67 |
528 |
483 |
438 |
371 |
347 |
280 |
235 |
190 |
145 |
100 |
561 |
539 |
494 |
617 |
8 |
470 |
425 |
380 |
335 |
290 |
245 |
200 |
155 |
110 |
571 |
549 |
504 |
459 |
414 |
369 |
302 |
278 |
211 |
166 |
121 |
76 |
54 |
515 |
618 |
5 |
491 |
446 |
401 |
356 |
311 |
266 |
221 |
176 |
131 |
86 |
64 |
525 |
480 |
435 |
390 |
345 |
300 |
233 |
209 |
142 |
97 |
558 |
536 |
621 |
4 |
512 |
467 |
422 |
377 |
332 |
287 |
242 |
197 |
152 |
107 |
568 |
546 |
501 |
456 |
411 |
366 |
321 |
276 |
231 |
164 |
140 |
73 |
51 |
622 |
1 |
533 |
488 |
443 |
398 |
353 |
308 |
263 |
218 |
173 |
128 |
83 |
61 |
522 |
477 |
432 |
387 |
342 |
297 |
252 |
207 |
162 |
95 |
577 |
625 |
600 |
578 |
581 |
583 |
585 |
586 |
588 |
589 |
592 |
594 |
596 |
601 |
23 |
22 |
19 |
18 |
15 |
14 |
11 |
10 |
7 |
6 |
3 |
2 |
602 |
You can use this method to construct magic squares of odd order from 5x5 to infinity. See on this website 5x5, 7x7, 9x9, 11x11, 13x13, 15x15, 17x17, 19x19, 21x21, 23x23, 25x25, 27x27, 29x29 & 31x31