The key to construct a panmagic & symmetric 25x25 square is 0 - 24 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21- 22 - 23
The second grid is a reflection (rotated by a quarter and mirrored) of the first grid.
Take 1x number from the first grid +1
0 | 24 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
22 | 23 | 0 | 24 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
20 | 21 | 22 | 23 | 0 | 24 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
18 | 19 | 20 | 21 | 22 | 23 | 0 | 24 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 | 24 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 | 24 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 | 24 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 | 24 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 | 24 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 | 24 | 1 | 2 | 3 | 4 | 5 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 | 24 | 1 | 2 | 3 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 | 24 | 1 |
24 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 |
23 | 0 | 24 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
21 | 22 | 23 | 0 | 24 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
19 | 20 | 21 | 22 | 23 | 0 | 24 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 | 24 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 | 24 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 | 24 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 | 24 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 | 24 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 | 24 | 1 | 2 | 3 | 4 | 5 | 6 |
5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 | 24 | 1 | 2 | 3 | 4 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 | 24 | 1 | 2 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 0 | 24 |
+ 25x number from second grid (= reflection of first grid)
0 | 22 | 20 | 18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 | 24 | 23 | 21 | 19 | 17 | 15 | 13 | 11 | 9 | 7 | 5 | 3 | 1 |
24 | 23 | 21 | 19 | 17 | 15 | 13 | 11 | 9 | 7 | 5 | 3 | 1 | 0 | 22 | 20 | 18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 |
1 | 0 | 22 | 20 | 18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 | 24 | 23 | 21 | 19 | 17 | 15 | 13 | 11 | 9 | 7 | 5 | 3 |
2 | 24 | 23 | 21 | 19 | 17 | 15 | 13 | 11 | 9 | 7 | 5 | 3 | 1 | 0 | 22 | 20 | 18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 |
3 | 1 | 0 | 22 | 20 | 18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 | 24 | 23 | 21 | 19 | 17 | 15 | 13 | 11 | 9 | 7 | 5 |
4 | 2 | 24 | 23 | 21 | 19 | 17 | 15 | 13 | 11 | 9 | 7 | 5 | 3 | 1 | 0 | 22 | 20 | 18 | 16 | 14 | 12 | 10 | 8 | 6 |
5 | 3 | 1 | 0 | 22 | 20 | 18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 | 24 | 23 | 21 | 19 | 17 | 15 | 13 | 11 | 9 | 7 |
6 | 4 | 2 | 24 | 23 | 21 | 19 | 17 | 15 | 13 | 11 | 9 | 7 | 5 | 3 | 1 | 0 | 22 | 20 | 18 | 16 | 14 | 12 | 10 | 8 |
7 | 5 | 3 | 1 | 0 | 22 | 20 | 18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 | 24 | 23 | 21 | 19 | 17 | 15 | 13 | 11 | 9 |
8 | 6 | 4 | 2 | 24 | 23 | 21 | 19 | 17 | 15 | 13 | 11 | 9 | 7 | 5 | 3 | 1 | 0 | 22 | 20 | 18 | 16 | 14 | 12 | 10 |
9 | 7 | 5 | 3 | 1 | 0 | 22 | 20 | 18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 | 24 | 23 | 21 | 19 | 17 | 15 | 13 | 11 |
10 | 8 | 6 | 4 | 2 | 24 | 23 | 21 | 19 | 17 | 15 | 13 | 11 | 9 | 7 | 5 | 3 | 1 | 0 | 22 | 20 | 18 | 16 | 14 | 12 |
11 | 9 | 7 | 5 | 3 | 1 | 0 | 22 | 20 | 18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 | 24 | 23 | 21 | 19 | 17 | 15 | 13 |
12 | 10 | 8 | 6 | 4 | 2 | 24 | 23 | 21 | 19 | 17 | 15 | 13 | 11 | 9 | 7 | 5 | 3 | 1 | 0 | 22 | 20 | 18 | 16 | 14 |
13 | 11 | 9 | 7 | 5 | 3 | 1 | 0 | 22 | 20 | 18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 | 24 | 23 | 21 | 19 | 17 | 15 |
14 | 12 | 10 | 8 | 6 | 4 | 2 | 24 | 23 | 21 | 19 | 17 | 15 | 13 | 11 | 9 | 7 | 5 | 3 | 1 | 0 | 22 | 20 | 18 | 16 |
15 | 13 | 11 | 9 | 7 | 5 | 3 | 1 | 0 | 22 | 20 | 18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 | 24 | 23 | 21 | 19 | 17 |
16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 | 24 | 23 | 21 | 19 | 17 | 15 | 13 | 11 | 9 | 7 | 5 | 3 | 1 | 0 | 22 | 20 | 18 |
17 | 15 | 13 | 11 | 9 | 7 | 5 | 3 | 1 | 0 | 22 | 20 | 18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 | 24 | 23 | 21 | 19 |
18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 | 24 | 23 | 21 | 19 | 17 | 15 | 13 | 11 | 9 | 7 | 5 | 3 | 1 | 0 | 22 | 20 |
19 | 17 | 15 | 13 | 11 | 9 | 7 | 5 | 3 | 1 | 0 | 22 | 20 | 18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 | 24 | 23 | 21 |
20 | 18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 | 24 | 23 | 21 | 19 | 17 | 15 | 13 | 11 | 9 | 7 | 5 | 3 | 1 | 0 | 22 |
21 | 19 | 17 | 15 | 13 | 11 | 9 | 7 | 5 | 3 | 1 | 0 | 22 | 20 | 18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 | 24 | 23 |
22 | 20 | 18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 | 24 | 23 | 21 | 19 | 17 | 15 | 13 | 11 | 9 | 7 | 5 | 3 | 1 | 0 |
23 | 21 | 19 | 17 | 15 | 13 | 11 | 9 | 7 | 5 | 3 | 1 | 0 | 22 | 20 | 18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 | 24 |
= Panmagic & symmetric 25x25 square
1 | 575 | 502 | 453 | 404 | 355 | 306 | 257 | 208 | 159 | 110 | 61 | 612 | 588 | 539 | 490 | 441 | 392 | 343 | 294 | 245 | 196 | 147 | 98 | 49 |
623 | 599 | 526 | 500 | 427 | 378 | 329 | 280 | 231 | 182 | 133 | 84 | 35 | 11 | 562 | 513 | 464 | 415 | 366 | 317 | 268 | 219 | 170 | 121 | 72 |
46 | 22 | 573 | 524 | 451 | 425 | 352 | 303 | 254 | 205 | 156 | 107 | 58 | 609 | 585 | 536 | 487 | 438 | 389 | 340 | 291 | 242 | 193 | 144 | 95 |
69 | 620 | 596 | 547 | 498 | 449 | 376 | 350 | 277 | 228 | 179 | 130 | 81 | 32 | 8 | 559 | 510 | 461 | 412 | 363 | 314 | 265 | 216 | 167 | 118 |
92 | 43 | 19 | 570 | 521 | 472 | 423 | 374 | 301 | 275 | 202 | 153 | 104 | 55 | 606 | 582 | 533 | 484 | 435 | 386 | 337 | 288 | 239 | 190 | 141 |
115 | 66 | 617 | 593 | 544 | 495 | 446 | 397 | 348 | 299 | 226 | 200 | 127 | 78 | 29 | 5 | 556 | 507 | 458 | 409 | 360 | 311 | 262 | 213 | 164 |
138 | 89 | 40 | 16 | 567 | 518 | 469 | 420 | 371 | 322 | 273 | 224 | 151 | 125 | 52 | 603 | 579 | 530 | 481 | 432 | 383 | 334 | 285 | 236 | 187 |
161 | 112 | 63 | 614 | 590 | 541 | 492 | 443 | 394 | 345 | 296 | 247 | 198 | 149 | 76 | 50 | 2 | 553 | 504 | 455 | 406 | 357 | 308 | 259 | 210 |
184 | 135 | 86 | 37 | 13 | 564 | 515 | 466 | 417 | 368 | 319 | 270 | 221 | 172 | 123 | 74 | 601 | 600 | 527 | 478 | 429 | 380 | 331 | 282 | 233 |
207 | 158 | 109 | 60 | 611 | 587 | 538 | 489 | 440 | 391 | 342 | 293 | 244 | 195 | 146 | 97 | 48 | 24 | 551 | 525 | 452 | 403 | 354 | 305 | 256 |
230 | 181 | 132 | 83 | 34 | 10 | 561 | 512 | 463 | 414 | 365 | 316 | 267 | 218 | 169 | 120 | 71 | 622 | 598 | 549 | 476 | 450 | 377 | 328 | 279 |
253 | 204 | 155 | 106 | 57 | 608 | 584 | 535 | 486 | 437 | 388 | 339 | 290 | 241 | 192 | 143 | 94 | 45 | 21 | 572 | 523 | 474 | 401 | 375 | 302 |
300 | 227 | 178 | 129 | 80 | 31 | 7 | 558 | 509 | 460 | 411 | 362 | 313 | 264 | 215 | 166 | 117 | 68 | 619 | 595 | 546 | 497 | 448 | 399 | 326 |
324 | 251 | 225 | 152 | 103 | 54 | 605 | 581 | 532 | 483 | 434 | 385 | 336 | 287 | 238 | 189 | 140 | 91 | 42 | 18 | 569 | 520 | 471 | 422 | 373 |
347 | 298 | 249 | 176 | 150 | 77 | 28 | 4 | 555 | 506 | 457 | 408 | 359 | 310 | 261 | 212 | 163 | 114 | 65 | 616 | 592 | 543 | 494 | 445 | 396 |
370 | 321 | 272 | 223 | 174 | 101 | 75 | 602 | 578 | 529 | 480 | 431 | 382 | 333 | 284 | 235 | 186 | 137 | 88 | 39 | 15 | 566 | 517 | 468 | 419 |
393 | 344 | 295 | 246 | 197 | 148 | 99 | 26 | 25 | 552 | 503 | 454 | 405 | 356 | 307 | 258 | 209 | 160 | 111 | 62 | 613 | 589 | 540 | 491 | 442 |
416 | 367 | 318 | 269 | 220 | 171 | 122 | 73 | 624 | 576 | 550 | 477 | 428 | 379 | 330 | 281 | 232 | 183 | 134 | 85 | 36 | 12 | 563 | 514 | 465 |
439 | 390 | 341 | 292 | 243 | 194 | 145 | 96 | 47 | 23 | 574 | 501 | 475 | 402 | 353 | 304 | 255 | 206 | 157 | 108 | 59 | 610 | 586 | 537 | 488 |
462 | 413 | 364 | 315 | 266 | 217 | 168 | 119 | 70 | 621 | 597 | 548 | 499 | 426 | 400 | 327 | 278 | 229 | 180 | 131 | 82 | 33 | 9 | 560 | 511 |
485 | 436 | 387 | 338 | 289 | 240 | 191 | 142 | 93 | 44 | 20 | 571 | 522 | 473 | 424 | 351 | 325 | 252 | 203 | 154 | 105 | 56 | 607 | 583 | 534 |
508 | 459 | 410 | 361 | 312 | 263 | 214 | 165 | 116 | 67 | 618 | 594 | 545 | 496 | 447 | 398 | 349 | 276 | 250 | 177 | 128 | 79 | 30 | 6 | 557 |
531 | 482 | 433 | 384 | 335 | 286 | 237 | 188 | 139 | 90 | 41 | 17 | 568 | 519 | 470 | 421 | 372 | 323 | 274 | 201 | 175 | 102 | 53 | 604 | 580 |
554 | 505 | 456 | 407 | 358 | 309 | 260 | 211 | 162 | 113 | 64 | 615 | 591 | 542 | 493 | 444 | 395 | 346 | 297 | 248 | 199 | 126 | 100 | 27 | 3 |
577 | 528 | 479 | 430 | 381 | 332 | 283 | 234 | 185 | 136 | 87 | 38 | 14 | 565 | 516 | 467 | 418 | 369 | 320 | 271 | 222 | 173 | 124 | 51 | 625 |
Use this method to construct odd magic squares which are no multiple of 3 from 5x5 to infinite (= 5x5, 7x7, 11x11, 13x13, 17x17, ... magic squares).