Use this method to construct odd magic squares which are no multiple of 3 (= 5x5, 7x7, 11x11, 13x13, 17x17, ... magic squares). To construct an 25x25 magic square, the first row is 0-a-b-c-d-e-f-g-h-i-j-k-l-m-n-o-p-q-r-s-t-u-v-w-x (fill in 1 up to 24 instead of a up to x; that gives 24x23x22x21x20x19x18x17x16x15x14x13x12x11x10x9x8x7x6x5x4x3x2 = 6,20448 * 1023 possibilities).
To construct row 2 up to 25 of the first grid shift the first row of the first grid each time two places to the left. To construct row 2 up to 25 of the second grid shift the first row of the second grid each time two places to the right.
Take 1x number from first grid +1
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 |
6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 |
8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 |
5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 |
7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
+ 25x number from second grid
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 |
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 |
24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 | 4 | 5 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 | 2 | 3 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 0 | 1 |
= panmagic 25x25 square
1 | 27 | 53 | 79 | 105 | 131 | 157 | 183 | 209 | 235 | 261 | 287 | 313 | 339 | 365 | 391 | 417 | 443 | 469 | 495 | 521 | 547 | 573 | 599 | 625 |
578 | 604 | 5 | 31 | 57 | 83 | 109 | 135 | 161 | 187 | 213 | 239 | 265 | 291 | 317 | 343 | 369 | 395 | 421 | 447 | 473 | 499 | 525 | 526 | 552 |
530 | 556 | 582 | 608 | 9 | 35 | 61 | 87 | 113 | 139 | 165 | 191 | 217 | 243 | 269 | 295 | 321 | 347 | 373 | 399 | 425 | 426 | 452 | 478 | 504 |
482 | 508 | 534 | 560 | 586 | 612 | 13 | 39 | 65 | 91 | 117 | 143 | 169 | 195 | 221 | 247 | 273 | 299 | 325 | 326 | 352 | 378 | 404 | 430 | 456 |
434 | 460 | 486 | 512 | 538 | 564 | 590 | 616 | 17 | 43 | 69 | 95 | 121 | 147 | 173 | 199 | 225 | 226 | 252 | 278 | 304 | 330 | 356 | 382 | 408 |
386 | 412 | 438 | 464 | 490 | 516 | 542 | 568 | 594 | 620 | 21 | 47 | 73 | 99 | 125 | 126 | 152 | 178 | 204 | 230 | 256 | 282 | 308 | 334 | 360 |
338 | 364 | 390 | 416 | 442 | 468 | 494 | 520 | 546 | 572 | 598 | 624 | 25 | 26 | 52 | 78 | 104 | 130 | 156 | 182 | 208 | 234 | 260 | 286 | 312 |
290 | 316 | 342 | 368 | 394 | 420 | 446 | 472 | 498 | 524 | 550 | 551 | 577 | 603 | 4 | 30 | 56 | 82 | 108 | 134 | 160 | 186 | 212 | 238 | 264 |
242 | 268 | 294 | 320 | 346 | 372 | 398 | 424 | 450 | 451 | 477 | 503 | 529 | 555 | 581 | 607 | 8 | 34 | 60 | 86 | 112 | 138 | 164 | 190 | 216 |
194 | 220 | 246 | 272 | 298 | 324 | 350 | 351 | 377 | 403 | 429 | 455 | 481 | 507 | 533 | 559 | 585 | 611 | 12 | 38 | 64 | 90 | 116 | 142 | 168 |
146 | 172 | 198 | 224 | 250 | 251 | 277 | 303 | 329 | 355 | 381 | 407 | 433 | 459 | 485 | 511 | 537 | 563 | 589 | 615 | 16 | 42 | 68 | 94 | 120 |
98 | 124 | 150 | 151 | 177 | 203 | 229 | 255 | 281 | 307 | 333 | 359 | 385 | 411 | 437 | 463 | 489 | 515 | 541 | 567 | 593 | 619 | 20 | 46 | 72 |
50 | 51 | 77 | 103 | 129 | 155 | 181 | 207 | 233 | 259 | 285 | 311 | 337 | 363 | 389 | 415 | 441 | 467 | 493 | 519 | 545 | 571 | 597 | 623 | 24 |
602 | 3 | 29 | 55 | 81 | 107 | 133 | 159 | 185 | 211 | 237 | 263 | 289 | 315 | 341 | 367 | 393 | 419 | 445 | 471 | 497 | 523 | 549 | 575 | 576 |
554 | 580 | 606 | 7 | 33 | 59 | 85 | 111 | 137 | 163 | 189 | 215 | 241 | 267 | 293 | 319 | 345 | 371 | 397 | 423 | 449 | 475 | 476 | 502 | 528 |
506 | 532 | 558 | 584 | 610 | 11 | 37 | 63 | 89 | 115 | 141 | 167 | 193 | 219 | 245 | 271 | 297 | 323 | 349 | 375 | 376 | 402 | 428 | 454 | 480 |
458 | 484 | 510 | 536 | 562 | 588 | 614 | 15 | 41 | 67 | 93 | 119 | 145 | 171 | 197 | 223 | 249 | 275 | 276 | 302 | 328 | 354 | 380 | 406 | 432 |
410 | 436 | 462 | 488 | 514 | 540 | 566 | 592 | 618 | 19 | 45 | 71 | 97 | 123 | 149 | 175 | 176 | 202 | 228 | 254 | 280 | 306 | 332 | 358 | 384 |
362 | 388 | 414 | 440 | 466 | 492 | 518 | 544 | 570 | 596 | 622 | 23 | 49 | 75 | 76 | 102 | 128 | 154 | 180 | 206 | 232 | 258 | 284 | 310 | 336 |
314 | 340 | 366 | 392 | 418 | 444 | 470 | 496 | 522 | 548 | 574 | 600 | 601 | 2 | 28 | 54 | 80 | 106 | 132 | 158 | 184 | 210 | 236 | 262 | 288 |
266 | 292 | 318 | 344 | 370 | 396 | 422 | 448 | 474 | 500 | 501 | 527 | 553 | 579 | 605 | 6 | 32 | 58 | 84 | 110 | 136 | 162 | 188 | 214 | 240 |
218 | 244 | 270 | 296 | 322 | 348 | 374 | 400 | 401 | 427 | 453 | 479 | 505 | 531 | 557 | 583 | 609 | 10 | 36 | 62 | 88 | 114 | 140 | 166 | 192 |
170 | 196 | 222 | 248 | 274 | 300 | 301 | 327 | 353 | 379 | 405 | 431 | 457 | 483 | 509 | 535 | 561 | 587 | 613 | 14 | 40 | 66 | 92 | 118 | 144 |
122 | 148 | 174 | 200 | 201 | 227 | 253 | 279 | 305 | 331 | 357 | 383 | 409 | 435 | 461 | 487 | 513 | 539 | 565 | 591 | 617 | 18 | 44 | 70 | 96 |
74 | 100 | 101 | 127 | 153 | 179 | 205 | 231 | 257 | 283 | 309 | 335 | 361 | 387 | 413 | 439 | 465 | 491 | 517 | 543 | 569 | 595 | 621 | 22 | 48 |
It is possible to shift this 25x25 magic square on a 2x2 carpet of the 25x25 magic square and you get 624 more solutions .
Instead of shift 2 to the left and shift 2 to the right, you can also shift 3, 4, 5, 6, 7, 8, 9, 10, 11 or 12 to the right and/or to the left (e.g. in the first grid shift 12 to the right and in the second grid shift 7 to the left ór 7 to the right). You can construct all (number is unknown) panmagic 25x25 squares.
Use the shift method to construct magic squares of odd order from 5x5 to infinity.
See 5x5, 7x7, 9x9 (1), 9x9 (2), 11x11, 13x13, 15x15 (1), 15x15 (2), 17x17, 19x19, 21x21 (1), 21x21 (2), 23x23, 25x25, 27x27 (1), 27x27 (2), 29x29 and 31x31