Take a ultra magic 25x25 square and add 52 to all numbers, so in the 25x25 inlay are the 625 middle numbers from 53 up to 677.
In the border are the 52 lowest (1 up to 52) and the 52 highest (678 up to 729) numbers. Read the explanation on webpage 3x3 in 5x5 & concentric, how to construct the border.
See in the download below how the 27x27 border has been constructed or use the download to puzzle your own border.
The result is:
Ultra 25x25 in 27x27 magic square
27 |
52 |
49 |
47 |
45 |
44 |
43 |
40 |
38 |
36 |
33 |
32 |
26 |
705 |
706 |
709 |
710 |
713 |
714 |
717 |
718 |
721 |
722 |
725 |
726 |
728 |
29 |
679 |
299 |
95 |
361 |
628 |
442 |
292 |
99 |
370 |
636 |
428 |
278 |
92 |
374 |
645 |
436 |
286 |
78 |
367 |
649 |
445 |
295 |
86 |
353 |
642 |
449 |
51 |
680 |
383 |
557 |
539 |
225 |
121 |
396 |
558 |
532 |
214 |
125 |
400 |
571 |
533 |
207 |
114 |
389 |
575 |
546 |
208 |
107 |
382 |
564 |
550 |
221 |
108 |
50 |
682 |
465 |
251 |
143 |
312 |
654 |
454 |
240 |
151 |
318 |
662 |
462 |
229 |
140 |
326 |
668 |
468 |
237 |
129 |
315 |
676 |
476 |
243 |
137 |
304 |
665 |
48 |
684 |
72 |
409 |
580 |
491 |
273 |
73 |
422 |
584 |
480 |
266 |
66 |
423 |
597 |
484 |
255 |
55 |
416 |
598 |
497 |
259 |
59 |
405 |
591 |
498 |
272 |
46 |
688 |
606 |
513 |
202 |
169 |
335 |
610 |
506 |
188 |
177 |
344 |
619 |
510 |
181 |
163 |
352 |
627 |
519 |
185 |
156 |
338 |
613 |
527 |
194 |
160 |
331 |
42 |
689 |
624 |
520 |
186 |
153 |
342 |
617 |
524 |
195 |
161 |
328 |
603 |
517 |
199 |
170 |
336 |
611 |
503 |
192 |
174 |
345 |
620 |
511 |
178 |
167 |
349 |
41 |
691 |
283 |
82 |
364 |
650 |
446 |
296 |
83 |
357 |
639 |
450 |
300 |
96 |
358 |
632 |
439 |
289 |
100 |
371 |
633 |
432 |
282 |
89 |
375 |
646 |
433 |
39 |
693 |
390 |
576 |
543 |
212 |
104 |
379 |
565 |
551 |
218 |
112 |
387 |
554 |
540 |
226 |
118 |
393 |
562 |
529 |
215 |
126 |
401 |
568 |
537 |
204 |
115 |
37 |
695 |
472 |
234 |
130 |
316 |
673 |
473 |
247 |
134 |
305 |
666 |
466 |
248 |
147 |
309 |
655 |
455 |
241 |
148 |
322 |
659 |
459 |
230 |
141 |
323 |
672 |
35 |
696 |
56 |
413 |
602 |
494 |
260 |
60 |
406 |
588 |
502 |
269 |
69 |
410 |
581 |
488 |
277 |
77 |
419 |
585 |
481 |
263 |
63 |
427 |
594 |
485 |
256 |
34 |
699 |
74 |
420 |
586 |
478 |
267 |
67 |
424 |
595 |
486 |
253 |
53 |
417 |
599 |
495 |
261 |
61 |
403 |
592 |
499 |
270 |
70 |
411 |
578 |
492 |
274 |
31 |
700 |
608 |
507 |
189 |
175 |
346 |
621 |
508 |
182 |
164 |
350 |
625 |
521 |
183 |
157 |
339 |
614 |
525 |
196 |
158 |
332 |
607 |
514 |
200 |
171 |
333 |
30 |
702 |
290 |
101 |
368 |
637 |
429 |
279 |
90 |
376 |
643 |
437 |
287 |
79 |
365 |
651 |
443 |
293 |
87 |
354 |
640 |
451 |
301 |
93 |
362 |
629 |
440 |
28 |
23 |
397 |
559 |
530 |
216 |
123 |
398 |
572 |
534 |
205 |
116 |
391 |
573 |
547 |
209 |
105 |
380 |
566 |
548 |
222 |
109 |
384 |
555 |
541 |
223 |
122 |
707 |
22 |
456 |
238 |
152 |
319 |
660 |
460 |
231 |
138 |
327 |
669 |
469 |
235 |
131 |
313 |
677 |
477 |
244 |
135 |
306 |
663 |
463 |
252 |
144 |
310 |
656 |
708 |
19 |
474 |
245 |
136 |
303 |
667 |
467 |
249 |
145 |
311 |
653 |
453 |
242 |
149 |
320 |
661 |
461 |
228 |
142 |
324 |
670 |
470 |
236 |
128 |
317 |
674 |
711 |
18 |
58 |
407 |
589 |
500 |
271 |
71 |
408 |
582 |
489 |
275 |
75 |
421 |
583 |
482 |
264 |
64 |
425 |
596 |
483 |
257 |
57 |
414 |
600 |
496 |
258 |
712 |
15 |
615 |
526 |
193 |
162 |
329 |
604 |
515 |
201 |
168 |
337 |
612 |
504 |
190 |
176 |
343 |
618 |
512 |
179 |
165 |
351 |
626 |
518 |
187 |
154 |
340 |
715 |
14 |
297 |
84 |
355 |
641 |
448 |
298 |
97 |
359 |
630 |
441 |
291 |
98 |
372 |
634 |
430 |
280 |
91 |
373 |
647 |
434 |
284 |
80 |
366 |
648 |
447 |
716 |
11 |
381 |
563 |
552 |
219 |
110 |
385 |
556 |
538 |
227 |
119 |
394 |
560 |
531 |
213 |
127 |
402 |
569 |
535 |
206 |
113 |
388 |
577 |
544 |
210 |
106 |
719 |
10 |
399 |
570 |
536 |
203 |
117 |
392 |
574 |
545 |
211 |
103 |
378 |
567 |
549 |
220 |
111 |
386 |
553 |
542 |
224 |
120 |
395 |
561 |
528 |
217 |
124 |
720 |
7 |
458 |
232 |
139 |
325 |
671 |
471 |
233 |
132 |
314 |
675 |
475 |
246 |
133 |
307 |
664 |
464 |
250 |
146 |
308 |
657 |
457 |
239 |
150 |
321 |
658 |
723 |
6 |
65 |
426 |
593 |
487 |
254 |
54 |
415 |
601 |
493 |
262 |
62 |
404 |
590 |
501 |
268 |
68 |
412 |
579 |
490 |
276 |
76 |
418 |
587 |
479 |
265 |
724 |
3 |
622 |
509 |
180 |
166 |
348 |
623 |
522 |
184 |
155 |
341 |
616 |
523 |
197 |
159 |
330 |
605 |
516 |
198 |
172 |
334 |
609 |
505 |
191 |
173 |
347 |
727 |
1 |
281 |
88 |
377 |
644 |
435 |
285 |
81 |
363 |
652 |
444 |
294 |
85 |
356 |
638 |
452 |
302 |
94 |
360 |
631 |
438 |
288 |
102 |
369 |
635 |
431 |
729 |
701 |
678 |
681 |
683 |
685 |
686 |
687 |
690 |
692 |
694 |
697 |
698 |
704 |
25 |
24 |
21 |
20 |
17 |
16 |
13 |
12 |
9 |
8 |
5 |
4 |
2 |
703 |
You can use this method to construct magic squares of odd order from 5x5 to infinity. See on this website 5x5, 7x7, 9x9, 11x11, 13x13, 15x15, 17x17, 19x19, 21x21, 23x23, 25x25, 27x27, 29x29 & 31x31