See for detailed explanation, webpage pan 4x4 in 6x6
Take a 26x26 magic square and add 54 to all numbers to get the 26x26 inlay and construct the 28x28 border.
The final result is:
26x26 in 28x28 magic square
17 |
2 |
5 |
12 |
20 |
25 |
31 |
35 |
36 |
39 |
43 |
45 |
52 |
781 |
778 |
775 |
774 |
771 |
770 |
766 |
758 |
753 |
744 |
739 |
735 |
734 |
732 |
18 |
782 |
706 |
703 |
598 |
595 |
490 |
487 |
382 |
379 |
274 |
271 |
166 |
163 |
58 |
55 |
678 |
675 |
570 |
567 |
462 |
459 |
354 |
351 |
246 |
243 |
138 |
135 |
3 |
776 |
704 |
705 |
596 |
597 |
488 |
489 |
380 |
381 |
272 |
273 |
164 |
165 |
56 |
57 |
676 |
677 |
568 |
569 |
460 |
461 |
352 |
353 |
244 |
245 |
136 |
137 |
9 |
772 |
86 |
83 |
654 |
651 |
546 |
543 |
438 |
435 |
330 |
327 |
222 |
219 |
114 |
111 |
682 |
679 |
626 |
623 |
518 |
515 |
410 |
407 |
302 |
299 |
194 |
191 |
13 |
769 |
84 |
85 |
652 |
653 |
544 |
545 |
436 |
437 |
328 |
329 |
220 |
221 |
112 |
113 |
680 |
681 |
624 |
625 |
516 |
517 |
408 |
409 |
300 |
301 |
192 |
193 |
16 |
763 |
142 |
139 |
710 |
707 |
602 |
599 |
494 |
491 |
386 |
383 |
278 |
275 |
170 |
167 |
62 |
59 |
630 |
627 |
574 |
571 |
466 |
463 |
358 |
355 |
250 |
247 |
22 |
761 |
140 |
141 |
708 |
709 |
600 |
601 |
492 |
493 |
384 |
385 |
276 |
277 |
168 |
169 |
60 |
61 |
628 |
629 |
572 |
573 |
464 |
465 |
356 |
357 |
248 |
249 |
24 |
756 |
198 |
195 |
90 |
87 |
658 |
655 |
550 |
547 |
442 |
439 |
334 |
331 |
226 |
223 |
118 |
115 |
686 |
683 |
578 |
575 |
522 |
519 |
414 |
411 |
306 |
303 |
29 |
755 |
196 |
197 |
88 |
89 |
656 |
657 |
548 |
549 |
440 |
441 |
332 |
333 |
224 |
225 |
116 |
117 |
684 |
685 |
576 |
577 |
520 |
521 |
412 |
413 |
304 |
305 |
30 |
751 |
254 |
251 |
146 |
143 |
714 |
711 |
606 |
603 |
498 |
495 |
390 |
387 |
282 |
279 |
174 |
171 |
66 |
63 |
634 |
631 |
526 |
523 |
470 |
467 |
362 |
359 |
34 |
743 |
252 |
253 |
144 |
145 |
712 |
713 |
604 |
605 |
496 |
497 |
388 |
389 |
280 |
281 |
172 |
173 |
64 |
65 |
632 |
633 |
524 |
525 |
468 |
469 |
360 |
361 |
42 |
741 |
310 |
307 |
202 |
199 |
94 |
91 |
662 |
659 |
554 |
551 |
446 |
443 |
338 |
335 |
230 |
227 |
122 |
119 |
690 |
687 |
582 |
579 |
474 |
471 |
418 |
415 |
44 |
738 |
308 |
309 |
200 |
201 |
92 |
93 |
660 |
661 |
552 |
553 |
444 |
445 |
336 |
337 |
228 |
229 |
120 |
121 |
688 |
689 |
580 |
581 |
472 |
473 |
416 |
417 |
47 |
736 |
366 |
363 |
258 |
255 |
150 |
147 |
718 |
715 |
610 |
607 |
502 |
499 |
391 |
394 |
286 |
283 |
178 |
175 |
70 |
67 |
638 |
635 |
530 |
527 |
422 |
419 |
49 |
1 |
364 |
365 |
256 |
257 |
148 |
149 |
716 |
717 |
608 |
609 |
500 |
501 |
392 |
393 |
284 |
285 |
176 |
177 |
68 |
69 |
636 |
637 |
528 |
529 |
420 |
421 |
784 |
6 |
367 |
370 |
311 |
314 |
203 |
206 |
95 |
98 |
663 |
666 |
555 |
558 |
450 |
447 |
339 |
342 |
231 |
234 |
123 |
126 |
691 |
694 |
583 |
586 |
475 |
478 |
779 |
8 |
368 |
369 |
312 |
313 |
204 |
205 |
96 |
97 |
664 |
665 |
556 |
557 |
448 |
449 |
340 |
341 |
232 |
233 |
124 |
125 |
692 |
693 |
584 |
585 |
476 |
477 |
777 |
21 |
423 |
426 |
315 |
318 |
259 |
262 |
151 |
154 |
719 |
722 |
611 |
614 |
503 |
506 |
395 |
398 |
287 |
290 |
179 |
182 |
71 |
74 |
639 |
642 |
531 |
534 |
764 |
23 |
425 |
424 |
317 |
316 |
261 |
260 |
153 |
152 |
721 |
720 |
613 |
612 |
505 |
504 |
397 |
396 |
289 |
288 |
181 |
180 |
73 |
72 |
641 |
640 |
533 |
532 |
762 |
26 |
479 |
482 |
371 |
374 |
263 |
266 |
207 |
210 |
99 |
102 |
667 |
670 |
559 |
562 |
451 |
454 |
343 |
346 |
235 |
238 |
127 |
130 |
695 |
698 |
587 |
590 |
759 |
28 |
481 |
480 |
373 |
372 |
265 |
264 |
209 |
208 |
101 |
100 |
669 |
668 |
561 |
560 |
453 |
452 |
345 |
344 |
237 |
236 |
129 |
128 |
697 |
696 |
589 |
588 |
757 |
33 |
535 |
538 |
427 |
430 |
319 |
322 |
211 |
214 |
155 |
158 |
723 |
726 |
615 |
618 |
507 |
510 |
399 |
402 |
291 |
294 |
183 |
186 |
75 |
78 |
643 |
646 |
752 |
37 |
537 |
536 |
429 |
428 |
321 |
320 |
213 |
212 |
157 |
156 |
725 |
724 |
617 |
616 |
509 |
508 |
401 |
400 |
293 |
292 |
185 |
184 |
77 |
76 |
645 |
644 |
748 |
38 |
591 |
594 |
483 |
486 |
375 |
378 |
267 |
270 |
159 |
162 |
103 |
106 |
671 |
674 |
563 |
566 |
455 |
458 |
347 |
350 |
239 |
242 |
131 |
134 |
699 |
702 |
747 |
40 |
593 |
592 |
485 |
484 |
377 |
376 |
269 |
268 |
161 |
160 |
105 |
104 |
673 |
672 |
565 |
564 |
457 |
456 |
349 |
348 |
241 |
240 |
133 |
132 |
701 |
700 |
745 |
48 |
647 |
650 |
539 |
542 |
431 |
434 |
323 |
326 |
215 |
218 |
107 |
110 |
727 |
730 |
619 |
622 |
511 |
514 |
403 |
406 |
295 |
298 |
187 |
190 |
79 |
82 |
737 |
54 |
649 |
648 |
541 |
540 |
433 |
432 |
325 |
324 |
217 |
216 |
109 |
108 |
729 |
728 |
621 |
620 |
513 |
512 |
405 |
404 |
297 |
296 |
189 |
188 |
81 |
80 |
731 |
767 |
783 |
780 |
773 |
765 |
760 |
754 |
750 |
749 |
746 |
742 |
740 |
733 |
4 |
7 |
10 |
11 |
14 |
15 |
19 |
27 |
32 |
41 |
46 |
50 |
51 |
53 |
768 |
Use this method to construct inlaid magic squares of even order. See 6x6, 8x8, 10x10, 12x12, 14x14, 16x16, 18x18, 20x20, 22x22, 24x24, 26x26, 28x28, 30x30 & 32x32