Use 7x7 the same 4x4 Sudoku pattern (as first grid) and a second fixed grid to construct a most perfect magic 28x28 square.
Take 1x number from first grid +1
2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 |
3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 |
0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 |
1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 |
2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 |
3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 |
0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 |
1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 |
2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 |
3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 |
0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 |
1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 |
2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 |
3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 |
0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 |
1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 |
2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 |
3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 |
0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 |
1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 |
2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 |
3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 |
0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 |
1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 |
2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 |
3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 |
0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 |
1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 |
+ 4x number from second grid
195 | 13 | 182 | 0 | 194 | 12 | 183 | 1 | 193 | 11 | 184 | 2 | 192 | 10 | 185 | 3 | 191 | 9 | 186 | 4 | 190 | 8 | 187 | 5 | 189 | 7 | 188 | 6 |
0 | 182 | 13 | 195 | 1 | 183 | 12 | 194 | 2 | 184 | 11 | 193 | 3 | 185 | 10 | 192 | 4 | 186 | 9 | 191 | 5 | 187 | 8 | 190 | 6 | 188 | 7 | 189 |
13 | 195 | 0 | 182 | 12 | 194 | 1 | 183 | 11 | 193 | 2 | 184 | 10 | 192 | 3 | 185 | 9 | 191 | 4 | 186 | 8 | 190 | 5 | 187 | 7 | 189 | 6 | 188 |
182 | 0 | 195 | 13 | 183 | 1 | 194 | 12 | 184 | 2 | 193 | 11 | 185 | 3 | 192 | 10 | 186 | 4 | 191 | 9 | 187 | 5 | 190 | 8 | 188 | 6 | 189 | 7 |
181 | 27 | 168 | 14 | 180 | 26 | 169 | 15 | 179 | 25 | 170 | 16 | 178 | 24 | 171 | 17 | 177 | 23 | 172 | 18 | 176 | 22 | 173 | 19 | 175 | 21 | 174 | 20 |
14 | 168 | 27 | 181 | 15 | 169 | 26 | 180 | 16 | 170 | 25 | 179 | 17 | 171 | 24 | 178 | 18 | 172 | 23 | 177 | 19 | 173 | 22 | 176 | 20 | 174 | 21 | 175 |
27 | 181 | 14 | 168 | 26 | 180 | 15 | 169 | 25 | 179 | 16 | 170 | 24 | 178 | 17 | 171 | 23 | 177 | 18 | 172 | 22 | 176 | 19 | 173 | 21 | 175 | 20 | 174 |
168 | 14 | 181 | 27 | 169 | 15 | 180 | 26 | 170 | 16 | 179 | 25 | 171 | 17 | 178 | 24 | 172 | 18 | 177 | 23 | 173 | 19 | 176 | 22 | 174 | 20 | 175 | 21 |
167 | 41 | 154 | 28 | 166 | 40 | 155 | 29 | 165 | 39 | 156 | 30 | 164 | 38 | 157 | 31 | 163 | 37 | 158 | 32 | 162 | 36 | 159 | 33 | 161 | 35 | 160 | 34 |
28 | 154 | 41 | 167 | 29 | 155 | 40 | 166 | 30 | 156 | 39 | 165 | 31 | 157 | 38 | 164 | 32 | 158 | 37 | 163 | 33 | 159 | 36 | 162 | 34 | 160 | 35 | 161 |
41 | 167 | 28 | 154 | 40 | 166 | 29 | 155 | 39 | 165 | 30 | 156 | 38 | 164 | 31 | 157 | 37 | 163 | 32 | 158 | 36 | 162 | 33 | 159 | 35 | 161 | 34 | 160 |
154 | 28 | 167 | 41 | 155 | 29 | 166 | 40 | 156 | 30 | 165 | 39 | 157 | 31 | 164 | 38 | 158 | 32 | 163 | 37 | 159 | 33 | 162 | 36 | 160 | 34 | 161 | 35 |
153 | 55 | 140 | 42 | 152 | 54 | 141 | 43 | 151 | 53 | 142 | 44 | 150 | 52 | 143 | 45 | 149 | 51 | 144 | 46 | 148 | 50 | 145 | 47 | 147 | 49 | 146 | 48 |
42 | 140 | 55 | 153 | 43 | 141 | 54 | 152 | 44 | 142 | 53 | 151 | 45 | 143 | 52 | 150 | 46 | 144 | 51 | 149 | 47 | 145 | 50 | 148 | 48 | 146 | 49 | 147 |
55 | 153 | 42 | 140 | 54 | 152 | 43 | 141 | 53 | 151 | 44 | 142 | 52 | 150 | 45 | 143 | 51 | 149 | 46 | 144 | 50 | 148 | 47 | 145 | 49 | 147 | 48 | 146 |
140 | 42 | 153 | 55 | 141 | 43 | 152 | 54 | 142 | 44 | 151 | 53 | 143 | 45 | 150 | 52 | 144 | 46 | 149 | 51 | 145 | 47 | 148 | 50 | 146 | 48 | 147 | 49 |
139 | 69 | 126 | 56 | 138 | 68 | 127 | 57 | 137 | 67 | 128 | 58 | 136 | 66 | 129 | 59 | 135 | 65 | 130 | 60 | 134 | 64 | 131 | 61 | 133 | 63 | 132 | 62 |
56 | 126 | 69 | 139 | 57 | 127 | 68 | 138 | 58 | 128 | 67 | 137 | 59 | 129 | 66 | 136 | 60 | 130 | 65 | 135 | 61 | 131 | 64 | 134 | 62 | 132 | 63 | 133 |
69 | 139 | 56 | 126 | 68 | 138 | 57 | 127 | 67 | 137 | 58 | 128 | 66 | 136 | 59 | 129 | 65 | 135 | 60 | 130 | 64 | 134 | 61 | 131 | 63 | 133 | 62 | 132 |
126 | 56 | 139 | 69 | 127 | 57 | 138 | 68 | 128 | 58 | 137 | 67 | 129 | 59 | 136 | 66 | 130 | 60 | 135 | 65 | 131 | 61 | 134 | 64 | 132 | 62 | 133 | 63 |
125 | 83 | 112 | 70 | 124 | 82 | 113 | 71 | 123 | 81 | 114 | 72 | 122 | 80 | 115 | 73 | 121 | 79 | 116 | 74 | 120 | 78 | 117 | 75 | 119 | 77 | 118 | 76 |
70 | 112 | 83 | 125 | 71 | 113 | 82 | 124 | 72 | 114 | 81 | 123 | 73 | 115 | 80 | 122 | 74 | 116 | 79 | 121 | 75 | 117 | 78 | 120 | 76 | 118 | 77 | 119 |
83 | 125 | 70 | 112 | 82 | 124 | 71 | 113 | 81 | 123 | 72 | 114 | 80 | 122 | 73 | 115 | 79 | 121 | 74 | 116 | 78 | 120 | 75 | 117 | 77 | 119 | 76 | 118 |
112 | 70 | 125 | 83 | 113 | 71 | 124 | 82 | 114 | 72 | 123 | 81 | 115 | 73 | 122 | 80 | 116 | 74 | 121 | 79 | 117 | 75 | 120 | 78 | 118 | 76 | 119 | 77 |
111 | 97 | 98 | 84 | 110 | 96 | 99 | 85 | 109 | 95 | 100 | 86 | 108 | 94 | 101 | 87 | 107 | 93 | 102 | 88 | 106 | 92 | 103 | 89 | 105 | 91 | 104 | 90 |
84 | 98 | 97 | 111 | 85 | 99 | 96 | 110 | 86 | 100 | 95 | 109 | 87 | 101 | 94 | 108 | 88 | 102 | 93 | 107 | 89 | 103 | 92 | 106 | 90 | 104 | 91 | 105 |
97 | 111 | 84 | 98 | 96 | 110 | 85 | 99 | 95 | 109 | 86 | 100 | 94 | 108 | 87 | 101 | 93 | 107 | 88 | 102 | 92 | 106 | 89 | 103 | 91 | 105 | 90 | 104 |
98 | 84 | 111 | 97 | 99 | 85 | 110 | 96 | 100 | 86 | 109 | 95 | 101 | 87 | 108 | 94 | 102 | 88 | 107 | 93 | 103 | 89 | 106 | 92 | 104 | 90 | 105 | 91 |
= 28x28 most perfect magic square
783 | 54 | 732 | 1 | 779 | 50 | 736 | 5 | 775 | 46 | 740 | 9 | 771 | 42 | 744 | 13 | 767 | 38 | 748 | 17 | 763 | 34 | 752 | 21 | 759 | 30 | 756 | 25 |
4 | 729 | 55 | 782 | 8 | 733 | 51 | 778 | 12 | 737 | 47 | 774 | 16 | 741 | 43 | 770 | 20 | 745 | 39 | 766 | 24 | 749 | 35 | 762 | 28 | 753 | 31 | 758 |
53 | 784 | 2 | 731 | 49 | 780 | 6 | 735 | 45 | 776 | 10 | 739 | 41 | 772 | 14 | 743 | 37 | 768 | 18 | 747 | 33 | 764 | 22 | 751 | 29 | 760 | 26 | 755 |
730 | 3 | 781 | 56 | 734 | 7 | 777 | 52 | 738 | 11 | 773 | 48 | 742 | 15 | 769 | 44 | 746 | 19 | 765 | 40 | 750 | 23 | 761 | 36 | 754 | 27 | 757 | 32 |
727 | 110 | 676 | 57 | 723 | 106 | 680 | 61 | 719 | 102 | 684 | 65 | 715 | 98 | 688 | 69 | 711 | 94 | 692 | 73 | 707 | 90 | 696 | 77 | 703 | 86 | 700 | 81 |
60 | 673 | 111 | 726 | 64 | 677 | 107 | 722 | 68 | 681 | 103 | 718 | 72 | 685 | 99 | 714 | 76 | 689 | 95 | 710 | 80 | 693 | 91 | 706 | 84 | 697 | 87 | 702 |
109 | 728 | 58 | 675 | 105 | 724 | 62 | 679 | 101 | 720 | 66 | 683 | 97 | 716 | 70 | 687 | 93 | 712 | 74 | 691 | 89 | 708 | 78 | 695 | 85 | 704 | 82 | 699 |
674 | 59 | 725 | 112 | 678 | 63 | 721 | 108 | 682 | 67 | 717 | 104 | 686 | 71 | 713 | 100 | 690 | 75 | 709 | 96 | 694 | 79 | 705 | 92 | 698 | 83 | 701 | 88 |
671 | 166 | 620 | 113 | 667 | 162 | 624 | 117 | 663 | 158 | 628 | 121 | 659 | 154 | 632 | 125 | 655 | 150 | 636 | 129 | 651 | 146 | 640 | 133 | 647 | 142 | 644 | 137 |
116 | 617 | 167 | 670 | 120 | 621 | 163 | 666 | 124 | 625 | 159 | 662 | 128 | 629 | 155 | 658 | 132 | 633 | 151 | 654 | 136 | 637 | 147 | 650 | 140 | 641 | 143 | 646 |
165 | 672 | 114 | 619 | 161 | 668 | 118 | 623 | 157 | 664 | 122 | 627 | 153 | 660 | 126 | 631 | 149 | 656 | 130 | 635 | 145 | 652 | 134 | 639 | 141 | 648 | 138 | 643 |
618 | 115 | 669 | 168 | 622 | 119 | 665 | 164 | 626 | 123 | 661 | 160 | 630 | 127 | 657 | 156 | 634 | 131 | 653 | 152 | 638 | 135 | 649 | 148 | 642 | 139 | 645 | 144 |
615 | 222 | 564 | 169 | 611 | 218 | 568 | 173 | 607 | 214 | 572 | 177 | 603 | 210 | 576 | 181 | 599 | 206 | 580 | 185 | 595 | 202 | 584 | 189 | 591 | 198 | 588 | 193 |
172 | 561 | 223 | 614 | 176 | 565 | 219 | 610 | 180 | 569 | 215 | 606 | 184 | 573 | 211 | 602 | 188 | 577 | 207 | 598 | 192 | 581 | 203 | 594 | 196 | 585 | 199 | 590 |
221 | 616 | 170 | 563 | 217 | 612 | 174 | 567 | 213 | 608 | 178 | 571 | 209 | 604 | 182 | 575 | 205 | 600 | 186 | 579 | 201 | 596 | 190 | 583 | 197 | 592 | 194 | 587 |
562 | 171 | 613 | 224 | 566 | 175 | 609 | 220 | 570 | 179 | 605 | 216 | 574 | 183 | 601 | 212 | 578 | 187 | 597 | 208 | 582 | 191 | 593 | 204 | 586 | 195 | 589 | 200 |
559 | 278 | 508 | 225 | 555 | 274 | 512 | 229 | 551 | 270 | 516 | 233 | 547 | 266 | 520 | 237 | 543 | 262 | 524 | 241 | 539 | 258 | 528 | 245 | 535 | 254 | 532 | 249 |
228 | 505 | 279 | 558 | 232 | 509 | 275 | 554 | 236 | 513 | 271 | 550 | 240 | 517 | 267 | 546 | 244 | 521 | 263 | 542 | 248 | 525 | 259 | 538 | 252 | 529 | 255 | 534 |
277 | 560 | 226 | 507 | 273 | 556 | 230 | 511 | 269 | 552 | 234 | 515 | 265 | 548 | 238 | 519 | 261 | 544 | 242 | 523 | 257 | 540 | 246 | 527 | 253 | 536 | 250 | 531 |
506 | 227 | 557 | 280 | 510 | 231 | 553 | 276 | 514 | 235 | 549 | 272 | 518 | 239 | 545 | 268 | 522 | 243 | 541 | 264 | 526 | 247 | 537 | 260 | 530 | 251 | 533 | 256 |
503 | 334 | 452 | 281 | 499 | 330 | 456 | 285 | 495 | 326 | 460 | 289 | 491 | 322 | 464 | 293 | 487 | 318 | 468 | 297 | 483 | 314 | 472 | 301 | 479 | 310 | 476 | 305 |
284 | 449 | 335 | 502 | 288 | 453 | 331 | 498 | 292 | 457 | 327 | 494 | 296 | 461 | 323 | 490 | 300 | 465 | 319 | 486 | 304 | 469 | 315 | 482 | 308 | 473 | 311 | 478 |
333 | 504 | 282 | 451 | 329 | 500 | 286 | 455 | 325 | 496 | 290 | 459 | 321 | 492 | 294 | 463 | 317 | 488 | 298 | 467 | 313 | 484 | 302 | 471 | 309 | 480 | 306 | 475 |
450 | 283 | 501 | 336 | 454 | 287 | 497 | 332 | 458 | 291 | 493 | 328 | 462 | 295 | 489 | 324 | 466 | 299 | 485 | 320 | 470 | 303 | 481 | 316 | 474 | 307 | 477 | 312 |
447 | 390 | 396 | 337 | 443 | 386 | 400 | 341 | 439 | 382 | 404 | 345 | 435 | 378 | 408 | 349 | 431 | 374 | 412 | 353 | 427 | 370 | 416 | 357 | 423 | 366 | 420 | 361 |
340 | 393 | 391 | 446 | 344 | 397 | 387 | 442 | 348 | 401 | 383 | 438 | 352 | 405 | 379 | 434 | 356 | 409 | 375 | 430 | 360 | 413 | 371 | 426 | 364 | 417 | 367 | 422 |
389 | 448 | 338 | 395 | 385 | 444 | 342 | 399 | 381 | 440 | 346 | 403 | 377 | 436 | 350 | 407 | 373 | 432 | 354 | 411 | 369 | 428 | 358 | 415 | 365 | 424 | 362 | 419 |
394 | 339 | 445 | 392 | 398 | 343 | 441 | 388 | 402 | 347 | 437 | 384 | 406 | 351 | 433 | 380 | 410 | 355 | 429 | 376 | 414 | 359 | 425 | 372 | 418 | 363 | 421 | 368 |
Use this method to construct most perfect (Franklin pan)magic squares which are a multiple of 4 from 8x8 to infinite. See
8x8, 12x12, 16x16, 20x20, 24x24, 28x28 and 32x32