Put number 1 in the middle of the top row. Put the numbers 2 up to n (= length of the square) each time one cell diagonal up and to the right. Put number n+1 below number n. Put the numbers n+2 up to 2n each time one cell diagonal up and to the right. Put number 2n+1 below number 2n. Etcetera ...
31x31 symmetric magic square
498 | 531 | 564 | 597 | 630 | 663 | 696 | 729 | 762 | 795 | 828 | 861 | 894 | 927 | 960 | 1 | 34 | 67 | 100 | 133 | 166 | 199 | 232 | 265 | 298 | 331 | 364 | 397 | 430 | 463 | 496 |
530 | 563 | 596 | 629 | 662 | 695 | 728 | 761 | 794 | 827 | 860 | 893 | 926 | 959 | 31 | 33 | 66 | 99 | 132 | 165 | 198 | 231 | 264 | 297 | 330 | 363 | 396 | 429 | 462 | 495 | 497 |
562 | 595 | 628 | 661 | 694 | 727 | 760 | 793 | 826 | 859 | 892 | 925 | 958 | 30 | 32 | 65 | 98 | 131 | 164 | 197 | 230 | 263 | 296 | 329 | 362 | 395 | 428 | 461 | 494 | 527 | 529 |
594 | 627 | 660 | 693 | 726 | 759 | 792 | 825 | 858 | 891 | 924 | 957 | 29 | 62 | 64 | 97 | 130 | 163 | 196 | 229 | 262 | 295 | 328 | 361 | 394 | 427 | 460 | 493 | 526 | 528 | 561 |
626 | 659 | 692 | 725 | 758 | 791 | 824 | 857 | 890 | 923 | 956 | 28 | 61 | 63 | 96 | 129 | 162 | 195 | 228 | 261 | 294 | 327 | 360 | 393 | 426 | 459 | 492 | 525 | 558 | 560 | 593 |
658 | 691 | 724 | 757 | 790 | 823 | 856 | 889 | 922 | 955 | 27 | 60 | 93 | 95 | 128 | 161 | 194 | 227 | 260 | 293 | 326 | 359 | 392 | 425 | 458 | 491 | 524 | 557 | 559 | 592 | 625 |
690 | 723 | 756 | 789 | 822 | 855 | 888 | 921 | 954 | 26 | 59 | 92 | 94 | 127 | 160 | 193 | 226 | 259 | 292 | 325 | 358 | 391 | 424 | 457 | 490 | 523 | 556 | 589 | 591 | 624 | 657 |
722 | 755 | 788 | 821 | 854 | 887 | 920 | 953 | 25 | 58 | 91 | 124 | 126 | 159 | 192 | 225 | 258 | 291 | 324 | 357 | 390 | 423 | 456 | 489 | 522 | 555 | 588 | 590 | 623 | 656 | 689 |
754 | 787 | 820 | 853 | 886 | 919 | 952 | 24 | 57 | 90 | 123 | 125 | 158 | 191 | 224 | 257 | 290 | 323 | 356 | 389 | 422 | 455 | 488 | 521 | 554 | 587 | 620 | 622 | 655 | 688 | 721 |
786 | 819 | 852 | 885 | 918 | 951 | 23 | 56 | 89 | 122 | 155 | 157 | 190 | 223 | 256 | 289 | 322 | 355 | 388 | 421 | 454 | 487 | 520 | 553 | 586 | 619 | 621 | 654 | 687 | 720 | 753 |
818 | 851 | 884 | 917 | 950 | 22 | 55 | 88 | 121 | 154 | 156 | 189 | 222 | 255 | 288 | 321 | 354 | 387 | 420 | 453 | 486 | 519 | 552 | 585 | 618 | 651 | 653 | 686 | 719 | 752 | 785 |
850 | 883 | 916 | 949 | 21 | 54 | 87 | 120 | 153 | 186 | 188 | 221 | 254 | 287 | 320 | 353 | 386 | 419 | 452 | 485 | 518 | 551 | 584 | 617 | 650 | 652 | 685 | 718 | 751 | 784 | 817 |
882 | 915 | 948 | 20 | 53 | 86 | 119 | 152 | 185 | 187 | 220 | 253 | 286 | 319 | 352 | 385 | 418 | 451 | 484 | 517 | 550 | 583 | 616 | 649 | 682 | 684 | 717 | 750 | 783 | 816 | 849 |
914 | 947 | 19 | 52 | 85 | 118 | 151 | 184 | 217 | 219 | 252 | 285 | 318 | 351 | 384 | 417 | 450 | 483 | 516 | 549 | 582 | 615 | 648 | 681 | 683 | 716 | 749 | 782 | 815 | 848 | 881 |
946 | 18 | 51 | 84 | 117 | 150 | 183 | 216 | 218 | 251 | 284 | 317 | 350 | 383 | 416 | 449 | 482 | 515 | 548 | 581 | 614 | 647 | 680 | 713 | 715 | 748 | 781 | 814 | 847 | 880 | 913 |
17 | 50 | 83 | 116 | 149 | 182 | 215 | 248 | 250 | 283 | 316 | 349 | 382 | 415 | 448 | 481 | 514 | 547 | 580 | 613 | 646 | 679 | 712 | 714 | 747 | 780 | 813 | 846 | 879 | 912 | 945 |
49 | 82 | 115 | 148 | 181 | 214 | 247 | 249 | 282 | 315 | 348 | 381 | 414 | 447 | 480 | 513 | 546 | 579 | 612 | 645 | 678 | 711 | 744 | 746 | 779 | 812 | 845 | 878 | 911 | 944 | 16 |
81 | 114 | 147 | 180 | 213 | 246 | 279 | 281 | 314 | 347 | 380 | 413 | 446 | 479 | 512 | 545 | 578 | 611 | 644 | 677 | 710 | 743 | 745 | 778 | 811 | 844 | 877 | 910 | 943 | 15 | 48 |
113 | 146 | 179 | 212 | 245 | 278 | 280 | 313 | 346 | 379 | 412 | 445 | 478 | 511 | 544 | 577 | 610 | 643 | 676 | 709 | 742 | 775 | 777 | 810 | 843 | 876 | 909 | 942 | 14 | 47 | 80 |
145 | 178 | 211 | 244 | 277 | 310 | 312 | 345 | 378 | 411 | 444 | 477 | 510 | 543 | 576 | 609 | 642 | 675 | 708 | 741 | 774 | 776 | 809 | 842 | 875 | 908 | 941 | 13 | 46 | 79 | 112 |
177 | 210 | 243 | 276 | 309 | 311 | 344 | 377 | 410 | 443 | 476 | 509 | 542 | 575 | 608 | 641 | 674 | 707 | 740 | 773 | 806 | 808 | 841 | 874 | 907 | 940 | 12 | 45 | 78 | 111 | 144 |
209 | 242 | 275 | 308 | 341 | 343 | 376 | 409 | 442 | 475 | 508 | 541 | 574 | 607 | 640 | 673 | 706 | 739 | 772 | 805 | 807 | 840 | 873 | 906 | 939 | 11 | 44 | 77 | 110 | 143 | 176 |
241 | 274 | 307 | 340 | 342 | 375 | 408 | 441 | 474 | 507 | 540 | 573 | 606 | 639 | 672 | 705 | 738 | 771 | 804 | 837 | 839 | 872 | 905 | 938 | 10 | 43 | 76 | 109 | 142 | 175 | 208 |
273 | 306 | 339 | 372 | 374 | 407 | 440 | 473 | 506 | 539 | 572 | 605 | 638 | 671 | 704 | 737 | 770 | 803 | 836 | 838 | 871 | 904 | 937 | 9 | 42 | 75 | 108 | 141 | 174 | 207 | 240 |
305 | 338 | 371 | 373 | 406 | 439 | 472 | 505 | 538 | 571 | 604 | 637 | 670 | 703 | 736 | 769 | 802 | 835 | 868 | 870 | 903 | 936 | 8 | 41 | 74 | 107 | 140 | 173 | 206 | 239 | 272 |
337 | 370 | 403 | 405 | 438 | 471 | 504 | 537 | 570 | 603 | 636 | 669 | 702 | 735 | 768 | 801 | 834 | 867 | 869 | 902 | 935 | 7 | 40 | 73 | 106 | 139 | 172 | 205 | 238 | 271 | 304 |
369 | 402 | 404 | 437 | 470 | 503 | 536 | 569 | 602 | 635 | 668 | 701 | 734 | 767 | 800 | 833 | 866 | 899 | 901 | 934 | 6 | 39 | 72 | 105 | 138 | 171 | 204 | 237 | 270 | 303 | 336 |
401 | 434 | 436 | 469 | 502 | 535 | 568 | 601 | 634 | 667 | 700 | 733 | 766 | 799 | 832 | 865 | 898 | 900 | 933 | 5 | 38 | 71 | 104 | 137 | 170 | 203 | 236 | 269 | 302 | 335 | 368 |
433 | 435 | 468 | 501 | 534 | 567 | 600 | 633 | 666 | 699 | 732 | 765 | 798 | 831 | 864 | 897 | 930 | 932 | 4 | 37 | 70 | 103 | 136 | 169 | 202 | 235 | 268 | 301 | 334 | 367 | 400 |
465 | 467 | 500 | 533 | 566 | 599 | 632 | 665 | 698 | 731 | 764 | 797 | 830 | 863 | 896 | 929 | 931 | 3 | 36 | 69 | 102 | 135 | 168 | 201 | 234 | 267 | 300 | 333 | 366 | 399 | 432 |
466 | 499 | 532 | 565 | 598 | 631 | 664 | 697 | 730 | 763 | 796 | 829 | 862 | 895 | 928 | 961 | 2 | 35 | 68 | 101 | 134 | 167 | 200 | 233 | 266 | 299 | 332 | 365 | 398 | 431 | 464 |
You can use this method to construct magic squares of odd order from 3x3 to infinite and you get a symmetric (but not pan)magic square.
See 3x3, 5x5, 7x7, 9x9, 11x11, 13x13, 15x15, 17x17, 19x19, 21x21, 23x23, 25x25, 27x27, 29x29 and 31x31