How to construct a most perfect (Franklin pan)magic 1024x1024 square in 9 steps by using only one 4x4 Sudoku
4x4 Sudoku
2 |
1 |
3 |
0 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
3 |
0 |
2 |
1 |
Step 1
Use the 4x4 Sudoku and a shifted version of the 4x4 Sudoku on a 2x2 carpet to construct a 4x4 panmagic square.
4x4 Sudoku shifted on 2x2 carpet
2 |
1 |
3 |
0 |
2 |
1 |
3 |
0 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
3 |
0 |
2 |
1 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
2 |
1 |
3 |
0 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
3 |
0 |
2 |
1 |
3 |
0 |
2 |
1 |
4x number + 1x number = +1 = 4x4 panmagic square
2 |
1 |
3 |
0 |
2 |
0 |
3 |
1 |
10 |
4 |
15 |
1 |
11 |
5 |
16 |
2 |
|||
1 |
2 |
0 |
3 |
3 |
1 |
2 |
0 |
7 |
9 |
2 |
12 |
8 |
10 |
3 |
13 |
|||
0 |
3 |
1 |
2 |
0 |
2 |
1 |
3 |
0 |
14 |
5 |
11 |
1 |
15 |
6 |
12 |
|||
3 |
0 |
2 |
1 |
1 |
3 |
0 |
2 |
13 |
3 |
8 |
6 |
14 |
4 |
9 |
7 |
Step 2
Use a grid with 2x2 the 4x4 panmagic square and a grid with 2x2 the shifted versions of the 4x4 Sudoku to construct an 8x8 most perfect (Franklin pan)magic square.
Construct the grid with 2x2 the shifted versions of the 4x4 Sudoku as follows:
+ |
||||||||||
+ |
+ |
|||||||||
+ |
||||||||||
1x number + 16x number = 8x8 Franklin panmagic square
11 |
5 |
16 |
2 |
11 |
5 |
16 |
2 |
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
43 |
21 |
64 |
2 |
59 |
5 |
48 |
18 |
||||
8 |
10 |
3 |
13 |
8 |
10 |
3 |
13 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
24 |
42 |
3 |
61 |
8 |
58 |
19 |
45 |
||||
1 |
15 |
6 |
12 |
1 |
15 |
6 |
12 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
1 |
63 |
22 |
44 |
17 |
47 |
6 |
60 |
||||
14 |
4 |
9 |
7 |
14 |
4 |
9 |
7 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
62 |
4 |
41 |
23 |
46 |
20 |
57 |
7 |
||||
11 |
5 |
16 |
2 |
11 |
5 |
16 |
2 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
11 |
53 |
32 |
34 |
27 |
37 |
16 |
50 |
||||
8 |
10 |
3 |
13 |
8 |
10 |
3 |
13 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
56 |
10 |
35 |
29 |
40 |
26 |
51 |
13 |
||||
1 |
15 |
6 |
12 |
1 |
15 |
6 |
12 |
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
33 |
31 |
54 |
12 |
49 |
15 |
38 |
28 |
||||
14 |
4 |
9 |
7 |
14 |
4 |
9 |
7 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
30 |
36 |
9 |
55 |
14 |
52 |
25 |
39 |
Step 3
Use a grid with 2x2 the 8x8 most perfect (Franklin pan)magic square and a grid with 2x2 the shifted versions of 8x8 Sudoku grid to construct an 16x16 most perfect (Franklin pan)magic square. See step 2 to construct the Sudoku grid
1x number
43 |
21 |
64 |
2 |
59 |
5 |
48 |
18 |
43 |
21 |
64 |
2 |
59 |
5 |
48 |
18 |
24 |
42 |
3 |
61 |
8 |
58 |
19 |
45 |
24 |
42 |
3 |
61 |
8 |
58 |
19 |
45 |
1 |
63 |
22 |
44 |
17 |
47 |
6 |
60 |
1 |
63 |
22 |
44 |
17 |
47 |
6 |
60 |
62 |
4 |
41 |
23 |
46 |
20 |
57 |
7 |
62 |
4 |
41 |
23 |
46 |
20 |
57 |
7 |
11 |
53 |
32 |
34 |
27 |
37 |
16 |
50 |
11 |
53 |
32 |
34 |
27 |
37 |
16 |
50 |
56 |
10 |
35 |
29 |
40 |
26 |
51 |
13 |
56 |
10 |
35 |
29 |
40 |
26 |
51 |
13 |
33 |
31 |
54 |
12 |
49 |
15 |
38 |
28 |
33 |
31 |
54 |
12 |
49 |
15 |
38 |
28 |
30 |
36 |
9 |
55 |
14 |
52 |
25 |
39 |
30 |
36 |
9 |
55 |
14 |
52 |
25 |
39 |
43 |
21 |
64 |
2 |
59 |
5 |
48 |
18 |
43 |
21 |
64 |
2 |
59 |
5 |
48 |
18 |
24 |
42 |
3 |
61 |
8 |
58 |
19 |
45 |
24 |
42 |
3 |
61 |
8 |
58 |
19 |
45 |
1 |
63 |
22 |
44 |
17 |
47 |
6 |
60 |
1 |
63 |
22 |
44 |
17 |
47 |
6 |
60 |
62 |
4 |
41 |
23 |
46 |
20 |
57 |
7 |
62 |
4 |
41 |
23 |
46 |
20 |
57 |
7 |
11 |
53 |
32 |
34 |
27 |
37 |
16 |
50 |
11 |
53 |
32 |
34 |
27 |
37 |
16 |
50 |
56 |
10 |
35 |
29 |
40 |
26 |
51 |
13 |
56 |
10 |
35 |
29 |
40 |
26 |
51 |
13 |
33 |
31 |
54 |
12 |
49 |
15 |
38 |
28 |
33 |
31 |
54 |
12 |
49 |
15 |
38 |
28 |
30 |
36 |
9 |
55 |
14 |
52 |
25 |
39 |
30 |
36 |
9 |
55 |
14 |
52 |
25 |
39 |
+
64x number
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
0 |
3 |
1 |
2 |
3 |
0 |
2 |
1 |
2 |
1 |
3 |
0 |
2 |
1 |
3 |
0 |
3 |
0 |
2 |
1 |
=
Most perfect 16x16 (Franklin pan)magic square
171 |
85 |
256 |
2 |
251 |
5 |
176 |
82 |
235 |
21 |
192 |
66 |
187 |
69 |
240 |
18 |
88 |
170 |
3 |
253 |
8 |
250 |
83 |
173 |
24 |
234 |
67 |
189 |
72 |
186 |
19 |
237 |
1 |
255 |
86 |
172 |
81 |
175 |
6 |
252 |
65 |
191 |
22 |
236 |
17 |
239 |
70 |
188 |
254 |
4 |
169 |
87 |
174 |
84 |
249 |
7 |
190 |
68 |
233 |
23 |
238 |
20 |
185 |
71 |
11 |
245 |
96 |
162 |
91 |
165 |
16 |
242 |
75 |
181 |
32 |
226 |
27 |
229 |
80 |
178 |
248 |
10 |
163 |
93 |
168 |
90 |
243 |
13 |
184 |
74 |
227 |
29 |
232 |
26 |
179 |
77 |
161 |
95 |
246 |
12 |
241 |
15 |
166 |
92 |
225 |
31 |
182 |
76 |
177 |
79 |
230 |
28 |
94 |
164 |
9 |
247 |
14 |
244 |
89 |
167 |
30 |
228 |
73 |
183 |
78 |
180 |
25 |
231 |
43 |
213 |
128 |
130 |
123 |
133 |
48 |
210 |
107 |
149 |
64 |
194 |
59 |
197 |
112 |
146 |
216 |
42 |
131 |
125 |
136 |
122 |
211 |
45 |
152 |
106 |
195 |
61 |
200 |
58 |
147 |
109 |
129 |
127 |
214 |
44 |
209 |
47 |
134 |
124 |
193 |
63 |
150 |
108 |
145 |
111 |
198 |
60 |
126 |
132 |
41 |
215 |
46 |
212 |
121 |
135 |
62 |
196 |
105 |
151 |
110 |
148 |
57 |
199 |
139 |
117 |
224 |
34 |
219 |
37 |
144 |
114 |
203 |
53 |
160 |
98 |
155 |
101 |
208 |
50 |
120 |
138 |
35 |
221 |
40 |
218 |
115 |
141 |
56 |
202 |
99 |
157 |
104 |
154 |
51 |
205 |
33 |
223 |
118 |
140 |
113 |
143 |
38 |
220 |
97 |
159 |
54 |
204 |
49 |
207 |
102 |
156 |
222 |
36 |
137 |
119 |
142 |
116 |
217 |
39 |
158 |
100 |
201 |
55 |
206 |
52 |
153 |
103 |
Step 4
Repeat step 3 to construct a 32x32 most perfect (Franklin pan)magic square.
Take 1x number from 2x2 most perfect 16x16 (Franklin pan)magic square
171 | 82 | 256 | 5 | 251 | 2 | 176 | 85 | 235 | 18 | 192 | 69 | 187 | 66 | 240 | 21 | 171 | 82 | 256 | 5 | 251 | 2 | 176 | 85 | 235 | 18 | 192 | 69 | 187 | 66 | 240 | 21 |
94 | 167 | 9 | 244 | 14 | 247 | 89 | 164 | 30 | 231 | 73 | 180 | 78 | 183 | 25 | 228 | 94 | 167 | 9 | 244 | 14 | 247 | 89 | 164 | 30 | 231 | 73 | 180 | 78 | 183 | 25 | 228 |
1 | 252 | 86 | 175 | 81 | 172 | 6 | 255 | 65 | 188 | 22 | 239 | 17 | 236 | 70 | 191 | 1 | 252 | 86 | 175 | 81 | 172 | 6 | 255 | 65 | 188 | 22 | 239 | 17 | 236 | 70 | 191 |
248 | 13 | 163 | 90 | 168 | 93 | 243 | 10 | 184 | 77 | 227 | 26 | 232 | 29 | 179 | 74 | 248 | 13 | 163 | 90 | 168 | 93 | 243 | 10 | 184 | 77 | 227 | 26 | 232 | 29 | 179 | 74 |
11 | 242 | 96 | 165 | 91 | 162 | 16 | 245 | 75 | 178 | 32 | 229 | 27 | 226 | 80 | 181 | 11 | 242 | 96 | 165 | 91 | 162 | 16 | 245 | 75 | 178 | 32 | 229 | 27 | 226 | 80 | 181 |
254 | 7 | 169 | 84 | 174 | 87 | 249 | 4 | 190 | 71 | 233 | 20 | 238 | 23 | 185 | 68 | 254 | 7 | 169 | 84 | 174 | 87 | 249 | 4 | 190 | 71 | 233 | 20 | 238 | 23 | 185 | 68 |
161 | 92 | 246 | 15 | 241 | 12 | 166 | 95 | 225 | 28 | 182 | 79 | 177 | 76 | 230 | 31 | 161 | 92 | 246 | 15 | 241 | 12 | 166 | 95 | 225 | 28 | 182 | 79 | 177 | 76 | 230 | 31 |
88 | 173 | 3 | 250 | 8 | 253 | 83 | 170 | 24 | 237 | 67 | 186 | 72 | 189 | 19 | 234 | 88 | 173 | 3 | 250 | 8 | 253 | 83 | 170 | 24 | 237 | 67 | 186 | 72 | 189 | 19 | 234 |
43 | 210 | 128 | 133 | 123 | 130 | 48 | 213 | 107 | 146 | 64 | 197 | 59 | 194 | 112 | 149 | 43 | 210 | 128 | 133 | 123 | 130 | 48 | 213 | 107 | 146 | 64 | 197 | 59 | 194 | 112 | 149 |
222 | 39 | 137 | 116 | 142 | 119 | 217 | 36 | 158 | 103 | 201 | 52 | 206 | 55 | 153 | 100 | 222 | 39 | 137 | 116 | 142 | 119 | 217 | 36 | 158 | 103 | 201 | 52 | 206 | 55 | 153 | 100 |
129 | 124 | 214 | 47 | 209 | 44 | 134 | 127 | 193 | 60 | 150 | 111 | 145 | 108 | 198 | 63 | 129 | 124 | 214 | 47 | 209 | 44 | 134 | 127 | 193 | 60 | 150 | 111 | 145 | 108 | 198 | 63 |
120 | 141 | 35 | 218 | 40 | 221 | 115 | 138 | 56 | 205 | 99 | 154 | 104 | 157 | 51 | 202 | 120 | 141 | 35 | 218 | 40 | 221 | 115 | 138 | 56 | 205 | 99 | 154 | 104 | 157 | 51 | 202 |
139 | 114 | 224 | 37 | 219 | 34 | 144 | 117 | 203 | 50 | 160 | 101 | 155 | 98 | 208 | 53 | 139 | 114 | 224 | 37 | 219 | 34 | 144 | 117 | 203 | 50 | 160 | 101 | 155 | 98 | 208 | 53 |
126 | 135 | 41 | 212 | 46 | 215 | 121 | 132 | 62 | 199 | 105 | 148 | 110 | 151 | 57 | 196 | 126 | 135 | 41 | 212 | 46 | 215 | 121 | 132 | 62 | 199 | 105 | 148 | 110 | 151 | 57 | 196 |
33 | 220 | 118 | 143 | 113 | 140 | 38 | 223 | 97 | 156 | 54 | 207 | 49 | 204 | 102 | 159 | 33 | 220 | 118 | 143 | 113 | 140 | 38 | 223 | 97 | 156 | 54 | 207 | 49 | 204 | 102 | 159 |
216 | 45 | 131 | 122 | 136 | 125 | 211 | 42 | 152 | 109 | 195 | 58 | 200 | 61 | 147 | 106 | 216 | 45 | 131 | 122 | 136 | 125 | 211 | 42 | 152 | 109 | 195 | 58 | 200 | 61 | 147 | 106 |
171 | 82 | 256 | 5 | 251 | 2 | 176 | 85 | 235 | 18 | 192 | 69 | 187 | 66 | 240 | 21 | 171 | 82 | 256 | 5 | 251 | 2 | 176 | 85 | 235 | 18 | 192 | 69 | 187 | 66 | 240 | 21 |
94 | 167 | 9 | 244 | 14 | 247 | 89 | 164 | 30 | 231 | 73 | 180 | 78 | 183 | 25 | 228 | 94 | 167 | 9 | 244 | 14 | 247 | 89 | 164 | 30 | 231 | 73 | 180 | 78 | 183 | 25 | 228 |
1 | 252 | 86 | 175 | 81 | 172 | 6 | 255 | 65 | 188 | 22 | 239 | 17 | 236 | 70 | 191 | 1 | 252 | 86 | 175 | 81 | 172 | 6 | 255 | 65 | 188 | 22 | 239 | 17 | 236 | 70 | 191 |
248 | 13 | 163 | 90 | 168 | 93 | 243 | 10 | 184 | 77 | 227 | 26 | 232 | 29 | 179 | 74 | 248 | 13 | 163 | 90 | 168 | 93 | 243 | 10 | 184 | 77 | 227 | 26 | 232 | 29 | 179 | 74 |
11 | 242 | 96 | 165 | 91 | 162 | 16 | 245 | 75 | 178 | 32 | 229 | 27 | 226 | 80 | 181 | 11 | 242 | 96 | 165 | 91 | 162 | 16 | 245 | 75 | 178 | 32 | 229 | 27 | 226 | 80 | 181 |
254 | 7 | 169 | 84 | 174 | 87 | 249 | 4 | 190 | 71 | 233 | 20 | 238 | 23 | 185 | 68 | 254 | 7 | 169 | 84 | 174 | 87 | 249 | 4 | 190 | 71 | 233 | 20 | 238 | 23 | 185 | 68 |
161 | 92 | 246 | 15 | 241 | 12 | 166 | 95 | 225 | 28 | 182 | 79 | 177 | 76 | 230 | 31 | 161 | 92 | 246 | 15 | 241 | 12 | 166 | 95 | 225 | 28 | 182 | 79 | 177 | 76 | 230 | 31 |
88 | 173 | 3 | 250 | 8 | 253 | 83 | 170 | 24 | 237 | 67 | 186 | 72 | 189 | 19 | 234 | 88 | 173 | 3 | 250 | 8 | 253 | 83 | 170 | 24 | 237 | 67 | 186 | 72 | 189 | 19 | 234 |
43 | 210 | 128 | 133 | 123 | 130 | 48 | 213 | 107 | 146 | 64 | 197 | 59 | 194 | 112 | 149 | 43 | 210 | 128 | 133 | 123 | 130 | 48 | 213 | 107 | 146 | 64 | 197 | 59 | 194 | 112 | 149 |
222 | 39 | 137 | 116 | 142 | 119 | 217 | 36 | 158 | 103 | 201 | 52 | 206 | 55 | 153 | 100 | 222 | 39 | 137 | 116 | 142 | 119 | 217 | 36 | 158 | 103 | 201 | 52 | 206 | 55 | 153 | 100 |
129 | 124 | 214 | 47 | 209 | 44 | 134 | 127 | 193 | 60 | 150 | 111 | 145 | 108 | 198 | 63 | 129 | 124 | 214 | 47 | 209 | 44 | 134 | 127 | 193 | 60 | 150 | 111 | 145 | 108 | 198 | 63 |
120 | 141 | 35 | 218 | 40 | 221 | 115 | 138 | 56 | 205 | 99 | 154 | 104 | 157 | 51 | 202 | 120 | 141 | 35 | 218 | 40 | 221 | 115 | 138 | 56 | 205 | 99 | 154 | 104 | 157 | 51 | 202 |
139 | 114 | 224 | 37 | 219 | 34 | 144 | 117 | 203 | 50 | 160 | 101 | 155 | 98 | 208 | 53 | 139 | 114 | 224 | 37 | 219 | 34 | 144 | 117 | 203 | 50 | 160 | 101 | 155 | 98 | 208 | 53 |
126 | 135 | 41 | 212 | 46 | 215 | 121 | 132 | 62 | 199 | 105 | 148 | 110 | 151 | 57 | 196 | 126 | 135 | 41 | 212 | 46 | 215 | 121 | 132 | 62 | 199 | 105 | 148 | 110 | 151 | 57 | 196 |
33 | 220 | 118 | 143 | 113 | 140 | 38 | 223 | 97 | 156 | 54 | 207 | 49 | 204 | 102 | 159 | 33 | 220 | 118 | 143 | 113 | 140 | 38 | 223 | 97 | 156 | 54 | 207 | 49 | 204 | 102 | 159 |
216 | 45 | 131 | 122 | 136 | 125 | 211 | 42 | 152 | 109 | 195 | 58 | 200 | 61 | 147 | 106 | 216 | 45 | 131 | 122 | 136 | 125 | 211 | 42 | 152 | 109 | 195 | 58 | 200 | 61 | 147 | 106 |
+ 256x number from Sudoku grid
2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 |
1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 |
0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 |
3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 |
0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 |
3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 |
2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 |
1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 |
0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 |
3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 |
2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 |
1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 |
2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 |
1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 |
0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 |
3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 |
0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 |
3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 |
2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 |
1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 |
2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 |
1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 |
0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 |
3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 |
2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 |
1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 |
0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 |
3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 |
0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 |
3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 |
2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 | 2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 | 3 | 0 | 2 | 1 |
1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 | 1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 | 0 | 3 | 1 | 2 |
= 32x32 most perfect (Franklin pan)magic square
683 | 338 | 1024 | 5 | 1019 | 2 | 688 | 341 | 1003 | 18 | 704 | 325 | 699 | 322 | 1008 | 21 | 939 | 82 | 768 | 261 | 763 | 258 | 944 | 85 | 747 | 274 | 960 | 69 | 955 | 66 | 752 | 277 |
350 | 679 | 9 | 1012 | 14 | 1015 | 345 | 676 | 30 | 999 | 329 | 692 | 334 | 695 | 25 | 996 | 94 | 935 | 265 | 756 | 270 | 759 | 89 | 932 | 286 | 743 | 73 | 948 | 78 | 951 | 281 | 740 |
1 | 1020 | 342 | 687 | 337 | 684 | 6 | 1023 | 321 | 700 | 22 | 1007 | 17 | 1004 | 326 | 703 | 257 | 764 | 86 | 943 | 81 | 940 | 262 | 767 | 65 | 956 | 278 | 751 | 273 | 748 | 70 | 959 |
1016 | 13 | 675 | 346 | 680 | 349 | 1011 | 10 | 696 | 333 | 995 | 26 | 1000 | 29 | 691 | 330 | 760 | 269 | 931 | 90 | 936 | 93 | 755 | 266 | 952 | 77 | 739 | 282 | 744 | 285 | 947 | 74 |
11 | 1010 | 352 | 677 | 347 | 674 | 16 | 1013 | 331 | 690 | 32 | 997 | 27 | 994 | 336 | 693 | 267 | 754 | 96 | 933 | 91 | 930 | 272 | 757 | 75 | 946 | 288 | 741 | 283 | 738 | 80 | 949 |
1022 | 7 | 681 | 340 | 686 | 343 | 1017 | 4 | 702 | 327 | 1001 | 20 | 1006 | 23 | 697 | 324 | 766 | 263 | 937 | 84 | 942 | 87 | 761 | 260 | 958 | 71 | 745 | 276 | 750 | 279 | 953 | 68 |
673 | 348 | 1014 | 15 | 1009 | 12 | 678 | 351 | 993 | 28 | 694 | 335 | 689 | 332 | 998 | 31 | 929 | 92 | 758 | 271 | 753 | 268 | 934 | 95 | 737 | 284 | 950 | 79 | 945 | 76 | 742 | 287 |
344 | 685 | 3 | 1018 | 8 | 1021 | 339 | 682 | 24 | 1005 | 323 | 698 | 328 | 701 | 19 | 1002 | 88 | 941 | 259 | 762 | 264 | 765 | 83 | 938 | 280 | 749 | 67 | 954 | 72 | 957 | 275 | 746 |
43 | 978 | 384 | 645 | 379 | 642 | 48 | 981 | 363 | 658 | 64 | 965 | 59 | 962 | 368 | 661 | 299 | 722 | 128 | 901 | 123 | 898 | 304 | 725 | 107 | 914 | 320 | 709 | 315 | 706 | 112 | 917 |
990 | 39 | 649 | 372 | 654 | 375 | 985 | 36 | 670 | 359 | 969 | 52 | 974 | 55 | 665 | 356 | 734 | 295 | 905 | 116 | 910 | 119 | 729 | 292 | 926 | 103 | 713 | 308 | 718 | 311 | 921 | 100 |
641 | 380 | 982 | 47 | 977 | 44 | 646 | 383 | 961 | 60 | 662 | 367 | 657 | 364 | 966 | 63 | 897 | 124 | 726 | 303 | 721 | 300 | 902 | 127 | 705 | 316 | 918 | 111 | 913 | 108 | 710 | 319 |
376 | 653 | 35 | 986 | 40 | 989 | 371 | 650 | 56 | 973 | 355 | 666 | 360 | 669 | 51 | 970 | 120 | 909 | 291 | 730 | 296 | 733 | 115 | 906 | 312 | 717 | 99 | 922 | 104 | 925 | 307 | 714 |
651 | 370 | 992 | 37 | 987 | 34 | 656 | 373 | 971 | 50 | 672 | 357 | 667 | 354 | 976 | 53 | 907 | 114 | 736 | 293 | 731 | 290 | 912 | 117 | 715 | 306 | 928 | 101 | 923 | 98 | 720 | 309 |
382 | 647 | 41 | 980 | 46 | 983 | 377 | 644 | 62 | 967 | 361 | 660 | 366 | 663 | 57 | 964 | 126 | 903 | 297 | 724 | 302 | 727 | 121 | 900 | 318 | 711 | 105 | 916 | 110 | 919 | 313 | 708 |
33 | 988 | 374 | 655 | 369 | 652 | 38 | 991 | 353 | 668 | 54 | 975 | 49 | 972 | 358 | 671 | 289 | 732 | 118 | 911 | 113 | 908 | 294 | 735 | 97 | 924 | 310 | 719 | 305 | 716 | 102 | 927 |
984 | 45 | 643 | 378 | 648 | 381 | 979 | 42 | 664 | 365 | 963 | 58 | 968 | 61 | 659 | 362 | 728 | 301 | 899 | 122 | 904 | 125 | 723 | 298 | 920 | 109 | 707 | 314 | 712 | 317 | 915 | 106 |
171 | 850 | 512 | 517 | 507 | 514 | 176 | 853 | 491 | 530 | 192 | 837 | 187 | 834 | 496 | 533 | 427 | 594 | 256 | 773 | 251 | 770 | 432 | 597 | 235 | 786 | 448 | 581 | 443 | 578 | 240 | 789 |
862 | 167 | 521 | 500 | 526 | 503 | 857 | 164 | 542 | 487 | 841 | 180 | 846 | 183 | 537 | 484 | 606 | 423 | 777 | 244 | 782 | 247 | 601 | 420 | 798 | 231 | 585 | 436 | 590 | 439 | 793 | 228 |
513 | 508 | 854 | 175 | 849 | 172 | 518 | 511 | 833 | 188 | 534 | 495 | 529 | 492 | 838 | 191 | 769 | 252 | 598 | 431 | 593 | 428 | 774 | 255 | 577 | 444 | 790 | 239 | 785 | 236 | 582 | 447 |
504 | 525 | 163 | 858 | 168 | 861 | 499 | 522 | 184 | 845 | 483 | 538 | 488 | 541 | 179 | 842 | 248 | 781 | 419 | 602 | 424 | 605 | 243 | 778 | 440 | 589 | 227 | 794 | 232 | 797 | 435 | 586 |
523 | 498 | 864 | 165 | 859 | 162 | 528 | 501 | 843 | 178 | 544 | 485 | 539 | 482 | 848 | 181 | 779 | 242 | 608 | 421 | 603 | 418 | 784 | 245 | 587 | 434 | 800 | 229 | 795 | 226 | 592 | 437 |
510 | 519 | 169 | 852 | 174 | 855 | 505 | 516 | 190 | 839 | 489 | 532 | 494 | 535 | 185 | 836 | 254 | 775 | 425 | 596 | 430 | 599 | 249 | 772 | 446 | 583 | 233 | 788 | 238 | 791 | 441 | 580 |
161 | 860 | 502 | 527 | 497 | 524 | 166 | 863 | 481 | 540 | 182 | 847 | 177 | 844 | 486 | 543 | 417 | 604 | 246 | 783 | 241 | 780 | 422 | 607 | 225 | 796 | 438 | 591 | 433 | 588 | 230 | 799 |
856 | 173 | 515 | 506 | 520 | 509 | 851 | 170 | 536 | 493 | 835 | 186 | 840 | 189 | 531 | 490 | 600 | 429 | 771 | 250 | 776 | 253 | 595 | 426 | 792 | 237 | 579 | 442 | 584 | 445 | 787 | 234 |
555 | 466 | 896 | 133 | 891 | 130 | 560 | 469 | 875 | 146 | 576 | 453 | 571 | 450 | 880 | 149 | 811 | 210 | 640 | 389 | 635 | 386 | 816 | 213 | 619 | 402 | 832 | 197 | 827 | 194 | 624 | 405 |
478 | 551 | 137 | 884 | 142 | 887 | 473 | 548 | 158 | 871 | 457 | 564 | 462 | 567 | 153 | 868 | 222 | 807 | 393 | 628 | 398 | 631 | 217 | 804 | 414 | 615 | 201 | 820 | 206 | 823 | 409 | 612 |
129 | 892 | 470 | 559 | 465 | 556 | 134 | 895 | 449 | 572 | 150 | 879 | 145 | 876 | 454 | 575 | 385 | 636 | 214 | 815 | 209 | 812 | 390 | 639 | 193 | 828 | 406 | 623 | 401 | 620 | 198 | 831 |
888 | 141 | 547 | 474 | 552 | 477 | 883 | 138 | 568 | 461 | 867 | 154 | 872 | 157 | 563 | 458 | 632 | 397 | 803 | 218 | 808 | 221 | 627 | 394 | 824 | 205 | 611 | 410 | 616 | 413 | 819 | 202 |
139 | 882 | 480 | 549 | 475 | 546 | 144 | 885 | 459 | 562 | 160 | 869 | 155 | 866 | 464 | 565 | 395 | 626 | 224 | 805 | 219 | 802 | 400 | 629 | 203 | 818 | 416 | 613 | 411 | 610 | 208 | 821 |
894 | 135 | 553 | 468 | 558 | 471 | 889 | 132 | 574 | 455 | 873 | 148 | 878 | 151 | 569 | 452 | 638 | 391 | 809 | 212 | 814 | 215 | 633 | 388 | 830 | 199 | 617 | 404 | 622 | 407 | 825 | 196 |
545 | 476 | 886 | 143 | 881 | 140 | 550 | 479 | 865 | 156 | 566 | 463 | 561 | 460 | 870 | 159 | 801 | 220 | 630 | 399 | 625 | 396 | 806 | 223 | 609 | 412 | 822 | 207 | 817 | 204 | 614 | 415 |
472 | 557 | 131 | 890 | 136 | 893 | 467 | 554 | 152 | 877 | 451 | 570 | 456 | 573 | 147 | 874 | 216 | 813 | 387 | 634 | 392 | 637 | 211 | 810 | 408 | 621 | 195 | 826 | 200 | 829 | 403 | 618 |
Step 5 t/m 9
Repeat step 4 five times to construct in succesion a most perfect (Franklin pan)magic 64x64, 128x128, 256x256, 512x512 and 1024x1024 square. Notify that only one 4x4 Sudoku is used!!
What is the scope of this method?
The 4x4 Sudoku is a ‘duplicater’. See below 32 duplicaters:
1 |
0 |
3 |
1 |
2 |
2 |
3 |
1 |
2 |
0 |
3 |
1 |
2 |
0 |
3 |
4 |
2 |
0 |
3 |
1 |
||||||||||
3 |
0 |
2 |
1 |
0 |
2 |
1 |
3 |
2 |
1 |
3 |
0 |
1 |
3 |
0 |
2 |
||||||||||||||
2 |
1 |
3 |
0 |
1 |
3 |
0 |
2 |
3 |
0 |
2 |
1 |
0 |
2 |
1 |
3 |
||||||||||||||
1 |
2 |
0 |
3 |
2 |
0 |
3 |
1 |
0 |
3 |
1 |
2 |
3 |
1 |
2 |
0 |
||||||||||||||
5 |
3 |
0 |
2 |
1 |
6 |
0 |
2 |
1 |
3 |
7 |
2 |
1 |
3 |
0 |
8 |
1 |
3 |
0 |
2 |
||||||||||
2 |
1 |
3 |
0 |
1 |
3 |
0 |
2 |
3 |
0 |
2 |
1 |
0 |
2 |
1 |
3 |
||||||||||||||
1 |
2 |
0 |
3 |
2 |
0 |
3 |
1 |
0 |
3 |
1 |
2 |
3 |
1 |
2 |
0 |
||||||||||||||
0 |
3 |
1 |
2 |
3 |
1 |
2 |
0 |
1 |
2 |
0 |
3 |
2 |
0 |
3 |
1 |
||||||||||||||
9 |
2 |
1 |
3 |
0 |
10 |
1 |
3 |
0 |
2 |
11 |
3 |
0 |
2 |
1 |
12 |
0 |
2 |
1 |
3 |
||||||||||
1 |
2 |
0 |
3 |
2 |
0 |
3 |
1 |
0 |
3 |
1 |
2 |
3 |
1 |
2 |
0 |
||||||||||||||
0 |
3 |
1 |
2 |
3 |
1 |
2 |
0 |
1 |
2 |
0 |
3 |
2 |
0 |
3 |
1 |
||||||||||||||
3 |
0 |
2 |
1 |
0 |
2 |
1 |
3 |
2 |
1 |
3 |
0 |
1 |
3 |
0 |
2 |
||||||||||||||
13 |
1 |
2 |
0 |
3 |
14 |
2 |
0 |
3 |
1 |
15 |
0 |
3 |
1 |
2 |
16 |
3 |
1 |
2 |
0 |
||||||||||
0 |
3 |
1 |
2 |
3 |
1 |
2 |
0 |
1 |
2 |
0 |
3 |
2 |
0 |
3 |
1 |
||||||||||||||
3 |
0 |
2 |
1 |
0 |
2 |
1 |
3 |
2 |
1 |
3 |
0 |
1 |
3 |
0 |
2 |
||||||||||||||
2 |
1 |
3 |
0 |
1 |
3 |
0 |
2 |
3 |
0 |
2 |
1 |
0 |
2 |
1 |
3 |
||||||||||||||
17 |
2 |
1 |
0 |
3 |
18 |
1 |
0 |
3 |
2 |
19 |
0 |
3 |
2 |
1 |
20 |
3 |
2 |
1 |
0 |
||||||||||
0 |
3 |
2 |
1 |
3 |
2 |
1 |
0 |
2 |
1 |
0 |
3 |
1 |
0 |
3 |
2 |
||||||||||||||
3 |
0 |
1 |
2 |
0 |
1 |
2 |
3 |
1 |
2 |
3 |
0 |
2 |
3 |
0 |
1 |
||||||||||||||
1 |
2 |
3 |
0 |
2 |
3 |
0 |
1 |
3 |
0 |
1 |
2 |
0 |
1 |
2 |
3 |
||||||||||||||
21 |
0 |
3 |
2 |
1 |
22 |
3 |
2 |
1 |
0 |
23 |
2 |
1 |
0 |
3 |
24 |
1 |
0 |
3 |
2 |
||||||||||
3 |
0 |
1 |
2 |
0 |
1 |
2 |
3 |
1 |
2 |
3 |
0 |
2 |
3 |
0 |
1 |
||||||||||||||
1 |
2 |
3 |
0 |
2 |
3 |
0 |
1 |
3 |
0 |
1 |
2 |
0 |
1 |
2 |
3 |
||||||||||||||
2 |
1 |
0 |
3 |
1 |
0 |
3 |
2 |
0 |
3 |
2 |
1 |
3 |
2 |
1 |
0 |
||||||||||||||
25 |
3 |
0 |
1 |
2 |
26 |
0 |
1 |
2 |
3 |
27 |
1 |
2 |
3 |
0 |
28 |
2 |
3 |
0 |
1 |
||||||||||
1 |
2 |
3 |
0 |
2 |
3 |
0 |
1 |
3 |
0 |
1 |
2 |
0 |
1 |
2 |
3 |
||||||||||||||
2 |
1 |
0 |
3 |
1 |
0 |
3 |
2 |
0 |
3 |
2 |
1 |
3 |
2 |
1 |
0 |
||||||||||||||
0 |
3 |
2 |
1 |
3 |
2 |
1 |
0 |
2 |
1 |
0 |
3 |
1 |
0 |
3 |
2 |
||||||||||||||
29 |
1 |
2 |
3 |
0 |
30 |
2 |
3 |
0 |
1 |
31 |
3 |
0 |
1 |
2 |
32 |
0 |
1 |
2 |
3 |
||||||||||
2 |
1 |
0 |
3 |
1 |
0 |
3 |
2 |
0 |
3 |
2 |
1 |
3 |
2 |
1 |
0 |
||||||||||||||
0 |
3 |
2 |
1 |
3 |
2 |
1 |
0 |
2 |
1 |
0 |
3 |
1 |
0 |
3 |
2 |
||||||||||||||
3 |
0 |
1 |
2 |
0 |
1 |
2 |
3 |
1 |
2 |
3 |
0 |
2 |
3 |
0 |
1 |
Not all 4x4 panmagic squares are suitable to duplicate to get valid magic squares; try it yourself.