Use the diagonal method of Yang Hui to construct a 5x5 symmetric magic square:
5x5 symmetric magic square
1 | |||||||||||||||
6 | 2 | ||||||||||||||
11 | 7 | 3 | 11 | 24 | 7 | 20 | 3 | ||||||||
16 | 12 | 8 | 4 | 4 | 12 | 25 | 8 | 16 | |||||||
21 | 17 | 13 | 9 | 5 | 17 | 5 | 13 | 21 | 9 | ||||||
22 | 18 | 14 | 10 | 10 | 18 | 1 | 14 | 22 | |||||||
23 | 19 | 15 | 23 | 6 | 19 | 2 | 15 | ||||||||
24 | 20 | ||||||||||||||
25 |
You can use this method to construct magic squares of odd order from 3x3 to infinite and you get symmetric (but not pan)magic squares.
See 3x3, 5x5, 7x7, 9x9, 11x11, 13x13, 15x15, 17x17, 19x19, 21x21, 23x23, 25x25, 27x27, 29x29 and 31x31