See method of
Gronogo (source: http://www.grogono.com/magic/6x6.php)
Take 1x number
2 |
2 |
9 |
9 |
4 |
4 |
2 |
2 |
9 |
9 |
4 |
4 |
7 |
7 |
5 |
5 |
3 |
3 |
7 |
7 |
5 |
5 |
3 |
3 |
6 |
6 |
1 |
1 |
8 |
8 |
6 |
6 |
1 |
1 |
8 |
8 |
Take 9x number
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
Take 18x number
0 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
1 |
= 6x6 magic square
2 |
29 |
27 |
36 |
4 |
13 |
20 |
11 |
18 |
9 |
31 |
22 |
16 |
7 |
32 |
23 |
30 |
3 |
34 |
25 |
14 |
5 |
12 |
21 |
15 |
6 |
19 |
28 |
26 |
17 |
24 |
33 |
1 |
10 |
8 |
35 |
Use the method of reflecting grids (2) to construct magic squares of order is double odd. See 6x6, 10x10, 14x14, 18x18, 22x22, 26x26 en 30x30