Use 4x the same panmagic 4x4 square and 2 fixed grids to construct a Franklin panmagic 8x8 square.
1x number from 4x the same panm. 4x4 |
|||||||
15 |
6 |
12 |
1 |
15 |
6 |
12 |
1 |
4 |
9 |
7 |
14 |
4 |
9 |
7 |
14 |
5 |
16 |
2 |
11 |
5 |
16 |
2 |
11 |
10 |
3 |
13 |
8 |
10 |
3 |
13 |
8 |
15 |
6 |
12 |
1 |
15 |
6 |
12 |
1 |
4 |
9 |
7 |
14 |
4 |
9 |
7 |
14 |
5 |
16 |
2 |
11 |
5 |
16 |
2 |
11 |
10 |
3 |
13 |
8 |
10 |
3 |
13 |
8 |
+16x number from fixed grid 1 |
|||||||
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
0 |
+32x number from fixed grid 2 |
|||||||
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
= Franklin panmagic 8x8 square |
|||||||
15 |
54 |
28 |
33 |
31 |
38 |
12 |
49 |
52 |
9 |
39 |
30 |
36 |
25 |
55 |
14 |
37 |
32 |
50 |
11 |
53 |
16 |
34 |
27 |
26 |
35 |
13 |
56 |
10 |
51 |
29 |
40 |
47 |
22 |
60 |
1 |
63 |
6 |
44 |
17 |
20 |
41 |
7 |
62 |
4 |
57 |
23 |
46 |
5 |
64 |
18 |
43 |
21 |
48 |
2 |
59 |
58 |
3 |
45 |
24 |
42 |
19 |
61 |
8 |
Notify that this Franklin panmagic 8x8 square has the extra tight Willem Barink structure.
Use basic pattern method (1) to construct magic squares of order is multiple of 4 from 8x8 to infinity. See 8x8, 12x12, 16x16a, 16x16b, 16x16c, 20x20, 24x24a, 24x24b, 28x28, 32x32a, 32x32b, 32x32c and 32x32d