Basic pattern method (1)

 

Use 4x the same panmagic 4x4 square and 2 fixed grids to construct a Franklin panmagic 8x8 square.

 

 

1x number from 4x the same panm. 4x4

15

6

12

1

15

6

12

1

4

9

7

14

4

9

7

14

5

16

2

11

5

16

2

11

10

3

13

8

10

3

13

8

15

6

12

1

15

6

12

1

4

9

7

14

4

9

7

14

5

16

2

11

5

16

2

11

10

3

13

8

10

3

13

8

               
               

+16x number from fixed grid 1

 

0

1

1

0

1

0

0

1

1

0

0

1

0

1

1

0

0

1

1

0

1

0

0

1

1

0

0

1

0

1

1

0

0

1

1

0

1

0

0

1

1

0

0

1

0

1

1

0

0

1

1

0

1

0

0

1

1

0

0

1

0

1

1

0

               
               

 

+32x number from fixed grid 2

 

0

1

0

1

0

1

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

1

0

1

0

1

0

1

1

0

1

0

1

0

1

0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

1

0

1

0

1

0

1

0

               
               

= Franklin panmagic 8x8 square

15

54

28

33

31

38

12

49

52

9

39

30

36

25

55

14

37

32

50

11

53

16

34

27

26

35

13

56

10

51

29

40

47

22

60

1

63

6

44

17

20

41

7

62

4

57

23

46

5

64

18

43

21

48

2

59

58

3

45

24

42

19

61

8

  

 

Notify that this Franklin panmagic 8x8 square has the extra tight Willem Barink structure.

 

 

Use basic pattern method (1) to construct magic squares of order is multiple of 4 from 8x8 to infinity. See 8x8, 12x12, 16x16a, 16x16b, 16x16c, 20x20, 24x24a, 24x24b, 28x2832x32a, 32x32b, 32x32c and 32x32d

 

Download
8x8, Basic pattern method (1).xls
Microsoft Excel werkblad 81.0 KB