For explanation of the Medjig method, see 6x6 magic square.
To construct the 8x8 magic square with the Medjig method, you need the "2x2 blown up" version of the panmagic 4x4 square.
The second grid consists of the famous 2x2 Medjig tiles. If you put the tiles in right order, you can use the Medjig method to produce a panmagic 8x8 square.
Take a number from a cell of the first grid and add 16x number from the same cell of the second grid.
1x number
1 | 1 | 8 | 8 | 13 | 13 | 12 | 12 |
1 | 1 | 8 | 8 | 13 | 13 | 12 | 12 |
15 | 15 | 10 | 10 | 3 | 3 | 6 | 6 |
15 | 15 | 10 | 10 | 3 | 3 | 6 | 6 |
4 | 4 | 5 | 5 | 16 | 16 | 9 | 9 |
4 | 4 | 5 | 5 | 16 | 16 | 9 | 9 |
14 | 14 | 11 | 11 | 2 | 2 | 7 | 7 |
14 | 14 | 11 | 11 | 2 | 2 | 7 | 7 |
+ 16x number
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
= panmagic 8x8 square
1 | 49 | 8 | 56 | 13 | 61 | 12 | 60 |
17 | 33 | 24 | 40 | 29 | 45 | 28 | 44 |
63 | 15 | 58 | 10 | 51 | 3 | 54 | 6 |
47 | 31 | 42 | 26 | 35 | 19 | 38 | 22 |
4 | 52 | 5 | 53 | 16 | 64 | 9 | 57 |
20 | 36 | 21 | 37 | 32 | 48 | 25 | 41 |
62 | 14 | 59 | 11 | 50 | 2 | 55 | 7 |
46 | 30 | 43 | 27 | 34 | 18 | 39 | 23 |
N.B.: Extra magic feauture is that each random chosen 4x4 square inside the 8x8 square gives (double) the magic sum of 520 (= 4x4 compact).
Use this method to construct even magic squares.
See 6x6, 8x8, 10x10, 12x12, 14x14, 16x16, 18x18, 20x20, 22x22, 24x24, 26x26, 28x28, 30x30 en 32x32