The first grid consists of 2x2 the same 4x4 Sudoku. In the second grid you find in each 4x4 quadrant 4 different numbers out of 0 up to 15. Each 4x4 quadrant is a proportional 4x4 panmagic square and the combined quadrants are fully 2x2 compact.
Take 1x numbers from first grid +1
2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 |
3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 |
0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 |
1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 |
2 | 1 | 3 | 0 | 2 | 1 | 3 | 0 |
3 | 0 | 2 | 1 | 3 | 0 | 2 | 1 |
0 | 3 | 1 | 2 | 0 | 3 | 1 | 2 |
1 | 2 | 0 | 3 | 1 | 2 | 0 | 3 |
+ 4x numbers from second grid
15 | 3 | 12 | 0 | 14 | 2 | 13 | 1 |
0 | 12 | 3 | 15 | 1 | 13 | 2 | 14 |
3 | 15 | 0 | 12 | 2 | 14 | 1 | 13 |
12 | 0 | 15 | 3 | 13 | 1 | 14 | 2 |
11 | 7 | 8 | 4 | 10 | 6 | 9 | 5 |
4 | 8 | 7 | 11 | 5 | 9 | 6 | 10 |
7 | 11 | 4 | 8 | 6 | 10 | 5 | 9 |
8 | 4 | 11 | 7 | 9 | 5 | 10 | 6 |
= 8x8 Franklin panmagic square
63 | 14 | 52 | 1 | 59 | 10 | 56 | 5 |
4 | 49 | 15 | 62 | 8 | 53 | 11 | 58 |
13 | 64 | 2 | 51 | 9 | 60 | 6 | 55 |
50 | 3 | 61 | 16 | 54 | 7 | 57 | 12 |
47 | 30 | 36 | 17 | 43 | 26 | 40 | 21 |
20 | 33 | 31 | 46 | 24 | 37 | 27 | 42 |
29 | 48 | 18 | 35 | 25 | 44 | 22 | 39 |
34 | 19 | 45 | 32 | 38 | 23 | 41 | 28 |
Use this method to construct most perfect (Franklin pan)magic squares which are a multiple of 4 from 8x8 to infinite. See
8x8, 12x12, 16x16, 20x20, 24x24, 28x28 and 32x32