Use 9 proportional (semi)magic 3x3 squares to construct a 9x9 magic square. Proportional means that all 9 (semi)magic 3x3 squares have the same magic sum of (1/3 x 369 = ) 123. Use the row and column coordinates of the 3x3 magic square. Don't use as row coordinates the numbers 0 up to 2, but use the numbers 1 up to (9x3 = ) 27 instead. To get the numbers proportional divided, use the following table:
1 | 18 | 23 | 42 | |
2 | 16 | 24 | 42 | |
3 | 17 | 22 | 42 | |
4 | 12 | 26 | 42 | |
5 | 10 | 27 | 42 | |
6 | 11 | 25 | 42 | |
7 | 15 | 20 | 42 | |
8 | 13 | 21 | 42 | |
9 | 14 | 19 | 42 |
Construct the 9 (semi)magic 3x3 squares.
Row coordinate +27x column coordinate = (semi)magic 3x3 square
18 | 1 | 23 | 0 | 2 | 1 | 18 | 55 | 50 | ||
23 | 18 | 1 | 2 | 1 | 0 | 77 | 45 | 1 | ||
1 | 23 | 18 | 1 | 0 | 2 | 28 | 23 | 72 | ||
16 | 2 | 24 | 0 | 2 | 1 | 16 | 56 | 51 | ||
24 | 16 | 2 | 2 | 1 | 0 | 78 | 43 | 2 | ||
2 | 24 | 16 | 1 | 0 | 2 | 29 | 24 | 70 | ||
17 | 3 | 22 | 0 | 2 | 1 | 17 | 57 | 49 | ||
22 | 17 | 3 | 2 | 1 | 0 | 76 | 44 | 3 | ||
3 | 22 | 17 | 1 | 0 | 2 | 30 | 22 | 71 | ||
12 | 4 | 26 | 0 | 2 | 1 | 12 | 58 | 53 | ||
26 | 12 | 4 | 2 | 1 | 0 | 80 | 39 | 4 | ||
4 | 26 | 12 | 1 | 0 | 2 | 31 | 26 | 66 | ||
10 | 5 | 27 | 0 | 2 | 1 | 10 | 59 | 54 | ||
27 | 10 | 5 | 2 | 1 | 0 | 81 | 37 | 5 | ||
5 | 27 | 10 | 1 | 0 | 2 | 32 | 27 | 64 | ||
11 | 6 | 25 | 0 | 2 | 1 | 11 | 60 | 52 | ||
25 | 11 | 6 | 2 | 1 | 0 | 79 | 38 | 6 | ||
6 | 25 | 11 | 1 | 0 | 2 | 33 | 25 | 65 | ||
15 | 7 | 20 | 0 | 2 | 1 | 15 | 61 | 47 | ||
20 | 15 | 7 | 2 | 1 | 0 | 74 | 42 | 7 | ||
7 | 20 | 15 | 1 | 0 | 2 | 34 | 20 | 69 | ||
13 | 8 | 21 | 0 | 2 | 1 | 13 | 62 | 48 | ||
21 | 13 | 8 | 2 | 1 | 0 | 75 | 40 | 8 | ||
8 | 21 | 13 | 1 | 0 | 2 | 35 | 21 | 67 | ||
14 | 9 | 19 | 0 | 2 | 1 | 14 | 63 | 46 | ||
19 | 14 | 9 | 2 | 1 | 0 | 73 | 41 | 9 | ||
9 | 19 | 14 | 1 | 0 | 2 | 36 | 19 | 68 |
Put the 9 (semi)magic 3x3 squares together.
9x9 magic square
18 | 55 | 50 | 16 | 56 | 51 | 17 | 57 | 49 |
77 | 45 | 1 | 78 | 43 | 2 | 76 | 44 | 3 |
28 | 23 | 72 | 29 | 24 | 70 | 30 | 22 | 71 |
12 | 58 | 53 | 10 | 59 | 54 | 11 | 60 | 52 |
80 | 39 | 4 | 81 | 37 | 5 | 79 | 38 | 6 |
31 | 26 | 66 | 32 | 27 | 64 | 33 | 25 | 65 |
15 | 61 | 47 | 13 | 62 | 48 | 14 | 63 | 46 |
74 | 42 | 7 | 75 | 40 | 8 | 73 | 41 | 9 |
34 | 20 | 69 | 35 | 21 | 67 | 36 | 19 | 68 |
Each 1/3 row/column gives 1/3 of the magic square and the 9x9 magic square is 3x3 compact, but not panmagic.
I have used composite method, proportional (1) to construct
8x8, 9x9, 12x12a, 12x12b, 15x15a, 15x15b, 16x16a, 16x16b, 18x18, 20x20a, 20x20b, 21x21a, 21x21b, 24x24a, 24x24b, 24x24c, 27x27a, 27x27b, 28x28a, 28x28b, 30x30a, 30x30b, 32x32a, 32x32b and 32x32c
Use a 3x9 magic rectangle to get a symmetric result:
1 | 25 | 16 | 42 | |
2 | 23 | 17 | 42 | |
15 | 21 | 6 | 42 | |
20 | 18 | 4 | 42 | |
19 | 14 | 9 | 42 | |
24 | 10 | 8 | 42 | |
22 | 7 | 13 | 42 | |
11 | 5 | 26 | 42 | |
12 | 3 | 27 | 42 |
Row coordinate +27x column coordinate = (semi)magic 3x3 square
25 | 1 | 16 | 0 | 2 | 1 | 25 | 55 | 43 | ||
16 | 25 | 1 | 2 | 1 | 0 | 70 | 52 | 1 | ||
1 | 16 | 25 | 1 | 0 | 2 | 28 | 16 | 79 | ||
23 | 2 | 17 | 0 | 2 | 1 | 23 | 56 | 44 | ||
17 | 23 | 2 | 2 | 1 | 0 | 71 | 50 | 2 | ||
2 | 17 | 23 | 1 | 0 | 2 | 29 | 17 | 77 | ||
21 | 15 | 6 | 0 | 2 | 1 | 21 | 69 | 33 | ||
6 | 21 | 15 | 2 | 1 | 0 | 60 | 48 | 15 | ||
15 | 6 | 21 | 1 | 0 | 2 | 42 | 6 | 75 | ||
18 | 20 | 4 | 0 | 2 | 1 | 18 | 74 | 31 | ||
4 | 18 | 20 | 2 | 1 | 0 | 58 | 45 | 20 | ||
20 | 4 | 18 | 1 | 0 | 2 | 47 | 4 | 72 | ||
14 | 19 | 9 | 0 | 2 | 1 | 14 | 73 | 36 | ||
9 | 14 | 19 | 2 | 1 | 0 | 63 | 41 | 19 | ||
19 | 9 | 14 | 1 | 0 | 2 | 46 | 9 | 68 | ||
10 | 24 | 8 | 0 | 2 | 1 | 10 | 78 | 35 | ||
8 | 10 | 24 | 2 | 1 | 0 | 62 | 37 | 24 | ||
24 | 8 | 10 | 1 | 0 | 2 | 51 | 8 | 64 | ||
7 | 22 | 13 | 0 | 2 | 1 | 7 | 76 | 40 | ||
13 | 7 | 22 | 2 | 1 | 0 | 67 | 34 | 22 | ||
22 | 13 | 7 | 1 | 0 | 2 | 49 | 13 | 61 | ||
5 | 11 | 26 | 0 | 2 | 1 | 5 | 65 | 53 | ||
26 | 5 | 11 | 2 | 1 | 0 | 80 | 32 | 11 | ||
11 | 26 | 5 | 1 | 0 | 2 | 38 | 26 | 59 | ||
3 | 12 | 27 | 0 | 2 | 1 | 3 | 66 | 54 | ||
27 | 3 | 12 | 2 | 1 | 0 | 81 | 30 | 12 | ||
12 | 27 | 3 | 1 | 0 | 2 | 39 | 27 | 57 |
9x9 magic square
25 | 55 | 43 | 23 | 56 | 44 | 21 | 69 | 33 |
70 | 52 | 1 | 71 | 50 | 2 | 60 | 48 | 15 |
28 | 16 | 79 | 29 | 17 | 77 | 42 | 6 | 75 |
18 | 74 | 31 | 14 | 73 | 36 | 10 | 78 | 35 |
58 | 45 | 20 | 63 | 41 | 19 | 62 | 37 | 24 |
47 | 4 | 72 | 46 | 9 | 68 | 51 | 8 | 64 |
7 | 76 | 40 | 5 | 65 | 53 | 3 | 66 | 54 |
67 | 34 | 22 | 80 | 32 | 11 | 81 | 30 | 12 |
49 | 13 | 61 | 38 | 26 | 59 | 39 | 27 | 57 |
Each 1/3 row/column gives 1/3 of the magic square and the 9x9 magic square is symmetric (but is not [fully] 3x3 compact and not panmagic).