Choose 4 grids, one odd V, one even V, one odd H and one even H (1, 3, 5, 7, 9 and 11 is odd and 2, 4, 6, 8, 10 and 12 is even).
V1 |
V2 |
H1 |
H2 |
||||||||||||||||||||||||||||||||||||||||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
||||||||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
||||||||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
||||||||
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
||||||||
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
||||||||
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
||||||||
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
||||||||
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
||||||||
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
||||||||
V3 |
V4 |
H3 |
H4 |
||||||||||||||||||||||||||||||||||||||||
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
||||||||
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
||||||||
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
||||||||
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
||||||||
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
||||||||
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
||||||||
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
||||||||
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
||||||||
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
||||||||
V5 |
V6 |
H5 |
H6 |
||||||||||||||||||||||||||||||||||||||||
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
||||||||
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
||||||||
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
||||||||
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
||||||||
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
||||||||
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
||||||||
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
||||||||
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
||||||||
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
||||||||
V7 |
V8 |
H7 |
H8 |
||||||||||||||||||||||||||||||||||||||||
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
||||||||
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
||||||||
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
||||||||
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
||||||||
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
||||||||
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
||||||||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
||||||||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
||||||||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
||||||||
V9 |
V10 |
H9 |
H10 |
||||||||||||||||||||||||||||||||||||||||
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
||||||||
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
||||||||
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
||||||||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
||||||||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
||||||||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
||||||||
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
||||||||
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
||||||||
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
||||||||
V11 |
V12 |
H11 |
H12 |
||||||||||||||||||||||||||||||||||||||||
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
||||||||
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
||||||||
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
||||||||
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
||||||||
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
||||||||
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
||||||||
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
||||||||
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
||||||||
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
Put the chosen 4 grids in random order. Take 1x number from first grid add 3x number from same cell of second grid add 9x number from same cell of
third grid add 27x number of fourth grid and add 1 to each cell.
We choose for example H2-V4-V1-H3.
Take 1x number from grid H2 |
||||||||
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
+ 3x number from grid V4 |
||||||||
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
+ 9x number from grid V1 |
||||||||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
+ 27x number from grid H3 +1 |
||||||||
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
|
||||||||
= panmagic 9x9 square |
||||||||
1 |
16 |
22 |
57 |
72 |
78 |
29 |
44 |
50 |
56 |
71 |
77 |
28 |
43 |
49 |
3 |
18 |
24 |
30 |
45 |
51 |
2 |
17 |
23 |
55 |
70 |
76 |
13 |
19 |
7 |
69 |
75 |
63 |
41 |
47 |
35 |
68 |
74 |
62 |
40 |
46 |
34 |
15 |
21 |
9 |
42 |
48 |
36 |
14 |
20 |
8 |
67 |
73 |
61 |
25 |
4 |
10 |
81 |
60 |
66 |
53 |
32 |
38 |
80 |
59 |
65 |
52 |
31 |
37 |
27 |
6 |
12 |
54 |
33 |
39 |
26 |
5 |
11 |
79 |
58 |
64 |
This 9x9 magic square is panmagic and 3x3 compact.
This method gives 6x6x6x6 (choose odd and even V en H) x 4x3x2x1 (random order grids) is 31.104 different 9x9 magic squares. Shifting the result on a 2x2 carpet of
the 9x9 magic square gives more possibilities.