Marios Mamzeris shows us that you can transform a odd square with sequencial numbers into a symmetric magic square in two steps (https://www.oddmagicsquares.com/):
Step 1, horizontal swap
< | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | ||
< | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 10 | 11 | ||
< | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 22 | 23 | 24 | 25 | 26 | 27 | 19 | 20 | 21 | ||
< | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 32 | 33 | 34 | 35 | 36 | 28 | 29 | 30 | 31 | ||
37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | |||
46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | > | 51 | 52 | 53 | 54 | 46 | 47 | 48 | 49 | 50 | ||
55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | > | 61 | 62 | 63 | 55 | 56 | 57 | 58 | 59 | 60 | ||
64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | > | 71 | 72 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | ||
73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | > | 81 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
Step 2, vertical swap
^ | ^ | ^ | ^ | ||||||||||||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 12 | 23 | 34 | 40 | 6 | 47 | 58 | 69 | 80 | ||
12 | 13 | 14 | 15 | 16 | 17 | 18 | 10 | 11 | 22 | 33 | 39 | 54 | 16 | 57 | 68 | 79 | 1 | ||
22 | 23 | 24 | 25 | 26 | 27 | 19 | 20 | 21 | 32 | 38 | 53 | 55 | 26 | 67 | 78 | 9 | 11 | ||
32 | 33 | 34 | 35 | 36 | 28 | 29 | 30 | 31 | 37 | 52 | 63 | 65 | 36 | 77 | 8 | 10 | 21 | ||
37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 51 | 62 | 64 | 75 | 41 | 7 | 18 | 20 | 31 | ||
51 | 52 | 53 | 54 | 46 | 47 | 48 | 49 | 50 | 61 | 72 | 74 | 5 | 46 | 17 | 19 | 30 | 45 | ||
61 | 62 | 63 | 55 | 56 | 57 | 58 | 59 | 60 | 71 | 73 | 4 | 15 | 56 | 27 | 29 | 44 | 50 | ||
71 | 72 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 81 | 3 | 14 | 25 | 66 | 28 | 43 | 49 | 60 | ||
81 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 2 | 13 | 24 | 35 | 76 | 42 | 48 | 59 | 70 | ||
v | v | v | v |
See 3x3, 5x5, 7x7, 9x9, 11x11, 13x13, 15x15, 17x17, 19x19, 21x21, 23x23, 25x25, 27x27, 29x29 and 31x31