Neem een 4x4 panmagisch vierkant, combineer de methode om een meest perfect 4x4x4 kubus te maken met de methode om een meest perfect 16x16 vierkant te maken (basispatroonmethode), puzzel het 4e patroon uit en je krijgt een Franklin panmagische 16x16x16 kubus.
Neem 1x getal uit patroon 1 [laag 1]
1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 |
15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 |
4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 |
14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 |
1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 |
15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 |
4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 |
14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 |
1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 |
15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 |
4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 |
14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 |
1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 | 1 | 8 | 13 | 12 |
15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 | 15 | 10 | 3 | 6 |
4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 | 4 | 5 | 16 | 9 |
14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 | 14 | 11 | 2 | 7 |
+ 16x getal uit 2e patroon [laag 1]
0 | 3 | 3 | 0 | 3 | 0 | 0 | 3 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
3 | 0 | 0 | 3 | 0 | 3 | 3 | 0 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
0 | 3 | 3 | 0 | 3 | 0 | 0 | 3 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
3 | 0 | 0 | 3 | 0 | 3 | 3 | 0 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
0 | 3 | 3 | 0 | 3 | 0 | 0 | 3 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
3 | 0 | 0 | 3 | 0 | 3 | 3 | 0 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
0 | 3 | 3 | 0 | 3 | 0 | 0 | 3 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
3 | 0 | 0 | 3 | 0 | 3 | 3 | 0 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
0 | 3 | 3 | 0 | 3 | 0 | 0 | 3 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
3 | 0 | 0 | 3 | 0 | 3 | 3 | 0 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
0 | 3 | 3 | 0 | 3 | 0 | 0 | 3 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
3 | 0 | 0 | 3 | 0 | 3 | 3 | 0 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
0 | 3 | 3 | 0 | 3 | 0 | 0 | 3 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
3 | 0 | 0 | 3 | 0 | 3 | 3 | 0 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
0 | 3 | 3 | 0 | 3 | 0 | 0 | 3 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
3 | 0 | 0 | 3 | 0 | 3 | 3 | 0 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
+ 64x getal uit 3e patroon [laag 1]
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
+ 256x getal uit 4e patroon [laag 1]
1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 |
16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 |
1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 |
16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 |
1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 |
16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 |
1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 |
16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 |
1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 |
16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 |
1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 |
16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 |
1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 |
16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 |
1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 |
16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 | 16 | 16 | 1 | 1 |
= Franklin panmagisch 16x16x16 kubus [laag 1]
1 | 248 | 3901 | 4044 | 49 | 200 | 3853 | 4092 | 17 | 232 | 3885 | 4060 | 33 | 216 | 3869 | 4076 |
4095 | 3850 | 195 | 54 | 4047 | 3898 | 243 | 6 | 4079 | 3866 | 211 | 38 | 4063 | 3882 | 227 | 22 |
196 | 53 | 4096 | 3849 | 244 | 5 | 4048 | 3897 | 212 | 37 | 4080 | 3865 | 228 | 21 | 4064 | 3881 |
3902 | 4043 | 2 | 247 | 3854 | 4091 | 50 | 199 | 3886 | 4059 | 18 | 231 | 3870 | 4075 | 34 | 215 |
193 | 56 | 4093 | 3852 | 241 | 8 | 4045 | 3900 | 209 | 40 | 4077 | 3868 | 225 | 24 | 4061 | 3884 |
3903 | 4042 | 3 | 246 | 3855 | 4090 | 51 | 198 | 3887 | 4058 | 19 | 230 | 3871 | 4074 | 35 | 214 |
4 | 245 | 3904 | 4041 | 52 | 197 | 3856 | 4089 | 20 | 229 | 3888 | 4057 | 36 | 213 | 3872 | 4073 |
4094 | 3851 | 194 | 55 | 4046 | 3899 | 242 | 7 | 4078 | 3867 | 210 | 39 | 4062 | 3883 | 226 | 23 |
65 | 184 | 3965 | 3980 | 113 | 136 | 3917 | 4028 | 81 | 168 | 3949 | 3996 | 97 | 152 | 3933 | 4012 |
4031 | 3914 | 131 | 118 | 3983 | 3962 | 179 | 70 | 4015 | 3930 | 147 | 102 | 3999 | 3946 | 163 | 86 |
132 | 117 | 4032 | 3913 | 180 | 69 | 3984 | 3961 | 148 | 101 | 4016 | 3929 | 164 | 85 | 4000 | 3945 |
3966 | 3979 | 66 | 183 | 3918 | 4027 | 114 | 135 | 3950 | 3995 | 82 | 167 | 3934 | 4011 | 98 | 151 |
129 | 120 | 4029 | 3916 | 177 | 72 | 3981 | 3964 | 145 | 104 | 4013 | 3932 | 161 | 88 | 3997 | 3948 |
3967 | 3978 | 67 | 182 | 3919 | 4026 | 115 | 134 | 3951 | 3994 | 83 | 166 | 3935 | 4010 | 99 | 150 |
68 | 181 | 3968 | 3977 | 116 | 133 | 3920 | 4025 | 84 | 165 | 3952 | 3993 | 100 | 149 | 3936 | 4009 |
4030 | 3915 | 130 | 119 | 3982 | 3963 | 178 | 71 | 4014 | 3931 | 146 | 103 | 3998 | 3947 | 162 | 87 |
Elke laag bestaat uit 16 proportionele panmagische 4x4 vierkanten. Daarom is de kubus in elke laag panmagisch en 2x2 compact en elke 1/4 rij/kolom/diagonaal levert 1/4 van de magische som op. De kubus is pandiagonaal en pantriagonaal magisch door de lagen heen en elke pilaar en elke ruimtelijke diagonaal levert de magische som op (= Nasik eigenschappen). Als extra eigenschappen klopt de kubus ook voor elke 1/4 pilaar en elke 1/2 ruimtelijke diagonaal.
Zie voor volledige uitwerking met alle 16 lagen, onderstaande download.