See for explanation about the Medjig method to construct a magic square: 6x6 magic square.
Construct a diagonal 24x24x24 magic cube by using to grids. The first grid consists of the 2x2x2 'blown up' diagonal 12x12x12 magic cube. The second grid does not consist of the 2x2 Mejig tiles with the numbers 0 up to 3, but consists of the 2x2x2 Medjig blocks with the numbers 0 up to 7. See below the grids and result of level 1.
Take 1x number from first grid with 2x2x2 'blown up' diagonal 12x12x12 [level 1]
109 | 109 | 1655 | 1655 | 76 | 76 | 1635 | 1635 | 88 | 88 | 1624 | 1624 | 757 | 757 | 1007 | 1007 | 724 | 724 | 987 | 987 | 736 | 736 | 976 | 976 |
109 | 109 | 1655 | 1655 | 76 | 76 | 1635 | 1635 | 88 | 88 | 1624 | 1624 | 757 | 757 | 1007 | 1007 | 724 | 724 | 987 | 987 | 736 | 736 | 976 | 976 |
1599 | 1599 | 156 | 156 | 1561 | 1561 | 170 | 170 | 1575 | 1575 | 126 | 126 | 951 | 951 | 804 | 804 | 913 | 913 | 818 | 818 | 927 | 927 | 774 | 774 |
1599 | 1599 | 156 | 156 | 1561 | 1561 | 170 | 170 | 1575 | 1575 | 126 | 126 | 951 | 951 | 804 | 804 | 913 | 913 | 818 | 818 | 927 | 927 | 774 | 774 |
140 | 140 | 1686 | 1686 | 52 | 52 | 1662 | 1662 | 53 | 53 | 1594 | 1594 | 788 | 788 | 1038 | 1038 | 700 | 700 | 1014 | 1014 | 701 | 701 | 946 | 946 |
140 | 140 | 1686 | 1686 | 52 | 52 | 1662 | 1662 | 53 | 53 | 1594 | 1594 | 788 | 788 | 1038 | 1038 | 700 | 700 | 1014 | 1014 | 701 | 701 | 946 | 946 |
1587 | 1587 | 1578 | 1578 | 182 | 182 | 1563 | 1563 | 139 | 139 | 138 | 138 | 939 | 939 | 930 | 930 | 830 | 830 | 915 | 915 | 787 | 787 | 786 | 786 |
1587 | 1587 | 1578 | 1578 | 182 | 182 | 1563 | 1563 | 139 | 139 | 138 | 138 | 939 | 939 | 930 | 930 | 830 | 830 | 915 | 915 | 787 | 787 | 786 | 786 |
1648 | 1648 | 40 | 40 | 1660 | 1660 | 65 | 65 | 1688 | 1688 | 86 | 86 | 1000 | 1000 | 688 | 688 | 1012 | 1012 | 713 | 713 | 1040 | 1040 | 734 | 734 |
1648 | 1648 | 40 | 40 | 1660 | 1660 | 65 | 65 | 1688 | 1688 | 86 | 86 | 1000 | 1000 | 688 | 688 | 1012 | 1012 | 713 | 713 | 1040 | 1040 | 734 | 734 |
104 | 104 | 72 | 72 | 1656 | 1656 | 92 | 92 | 1644 | 1644 | 1619 | 1619 | 752 | 752 | 720 | 720 | 1008 | 1008 | 740 | 740 | 996 | 996 | 971 | 971 |
104 | 104 | 72 | 72 | 1656 | 1656 | 92 | 92 | 1644 | 1644 | 1619 | 1619 | 752 | 752 | 720 | 720 | 1008 | 1008 | 740 | 740 | 996 | 996 | 971 | 971 |
1189 | 1189 | 575 | 575 | 1156 | 1156 | 555 | 555 | 1168 | 1168 | 544 | 544 | 1405 | 1405 | 359 | 359 | 1372 | 1372 | 339 | 339 | 1384 | 1384 | 328 | 328 |
1189 | 1189 | 575 | 575 | 1156 | 1156 | 555 | 555 | 1168 | 1168 | 544 | 544 | 1405 | 1405 | 359 | 359 | 1372 | 1372 | 339 | 339 | 1384 | 1384 | 328 | 328 |
519 | 519 | 1236 | 1236 | 481 | 481 | 1250 | 1250 | 495 | 495 | 1206 | 1206 | 303 | 303 | 1452 | 1452 | 265 | 265 | 1466 | 1466 | 279 | 279 | 1422 | 1422 |
519 | 519 | 1236 | 1236 | 481 | 481 | 1250 | 1250 | 495 | 495 | 1206 | 1206 | 303 | 303 | 1452 | 1452 | 265 | 265 | 1466 | 1466 | 279 | 279 | 1422 | 1422 |
1220 | 1220 | 606 | 606 | 1132 | 1132 | 582 | 582 | 1133 | 1133 | 514 | 514 | 1436 | 1436 | 390 | 390 | 1348 | 1348 | 366 | 366 | 1349 | 1349 | 298 | 298 |
1220 | 1220 | 606 | 606 | 1132 | 1132 | 582 | 582 | 1133 | 1133 | 514 | 514 | 1436 | 1436 | 390 | 390 | 1348 | 1348 | 366 | 366 | 1349 | 1349 | 298 | 298 |
507 | 507 | 498 | 498 | 1262 | 1262 | 483 | 483 | 1219 | 1219 | 1218 | 1218 | 291 | 291 | 282 | 282 | 1478 | 1478 | 267 | 267 | 1435 | 1435 | 1434 | 1434 |
507 | 507 | 498 | 498 | 1262 | 1262 | 483 | 483 | 1219 | 1219 | 1218 | 1218 | 291 | 291 | 282 | 282 | 1478 | 1478 | 267 | 267 | 1435 | 1435 | 1434 | 1434 |
568 | 568 | 1120 | 1120 | 580 | 580 | 1145 | 1145 | 608 | 608 | 1166 | 1166 | 352 | 352 | 1336 | 1336 | 364 | 364 | 1361 | 1361 | 392 | 392 | 1382 | 1382 |
568 | 568 | 1120 | 1120 | 580 | 580 | 1145 | 1145 | 608 | 608 | 1166 | 1166 | 352 | 352 | 1336 | 1336 | 364 | 364 | 1361 | 1361 | 392 | 392 | 1382 | 1382 |
1184 | 1184 | 1152 | 1152 | 576 | 576 | 1172 | 1172 | 564 | 564 | 539 | 539 | 1400 | 1400 | 1368 | 1368 | 360 | 360 | 1388 | 1388 | 348 | 348 | 323 | 323 |
1184 | 1184 | 1152 | 1152 | 576 | 576 | 1172 | 1172 | 564 | 564 | 539 | 539 | 1400 | 1400 | 1368 | 1368 | 360 | 360 | 1388 | 1388 | 348 | 348 | 323 | 323 |
+ 1.728x number from second grid with 2x2x2 Medjig blocks [level 1]
0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 |
3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 |
4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 |
7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 |
0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 |
3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 |
4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 |
7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 |
0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 |
3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 |
4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 |
7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 |
0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 |
3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 |
4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 |
7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 |
0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 |
3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 |
4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 |
7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 |
0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 |
3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 |
4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 | 4 | 2 | 7 | 1 | 3 | 5 | 0 | 6 |
7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 | 7 | 1 | 4 | 2 | 0 | 6 | 3 | 5 |
= 24x24x24 diagonal magic cube [level 1]
109 | 10477 | 6839 | 10295 | 12172 | 1804 | 8547 | 5091 | 88 | 10456 | 6808 | 10264 | 12853 | 2485 | 7919 | 4463 | 724 | 11092 | 6171 | 9627 | 12832 | 2464 | 7888 | 4432 |
5293 | 8749 | 1655 | 12023 | 6988 | 3532 | 13731 | 3363 | 5272 | 8728 | 1624 | 11992 | 7669 | 4213 | 13103 | 2735 | 5908 | 9364 | 987 | 11355 | 7648 | 4192 | 13072 | 2704 |
8511 | 5055 | 12252 | 1884 | 6745 | 10201 | 170 | 10538 | 8487 | 5031 | 12222 | 1854 | 6135 | 9591 | 804 | 11172 | 7825 | 4369 | 12914 | 2546 | 6111 | 9567 | 774 | 11142 |
13695 | 3327 | 7068 | 3612 | 1561 | 11929 | 5354 | 8810 | 13671 | 3303 | 7038 | 3582 | 951 | 11319 | 5988 | 9444 | 13009 | 2641 | 7730 | 4274 | 927 | 11295 | 5958 | 9414 |
140 | 10508 | 6870 | 10326 | 12148 | 1780 | 8574 | 5118 | 53 | 10421 | 6778 | 10234 | 12884 | 2516 | 7950 | 4494 | 700 | 11068 | 6198 | 9654 | 12797 | 2429 | 7858 | 4402 |
5324 | 8780 | 1686 | 12054 | 6964 | 3508 | 13758 | 3390 | 5237 | 8693 | 1594 | 11962 | 7700 | 4244 | 13134 | 2766 | 5884 | 9340 | 1014 | 11382 | 7613 | 4157 | 13042 | 2674 |
8499 | 5043 | 13674 | 3306 | 5366 | 8822 | 1563 | 11931 | 7051 | 3595 | 12234 | 1866 | 6123 | 9579 | 930 | 11298 | 7742 | 4286 | 13011 | 2643 | 5971 | 9427 | 786 | 11154 |
13683 | 3315 | 8490 | 5034 | 182 | 10550 | 6747 | 10203 | 12235 | 1867 | 7050 | 3594 | 939 | 11307 | 6114 | 9570 | 12926 | 2558 | 7827 | 4371 | 787 | 11155 | 5970 | 9426 |
1648 | 12016 | 5224 | 8680 | 13756 | 3388 | 6977 | 3521 | 1688 | 12056 | 5270 | 8726 | 13096 | 2728 | 7600 | 4144 | 1012 | 11380 | 5897 | 9353 | 13136 | 2768 | 7646 | 4190 |
6832 | 10288 | 40 | 10408 | 8572 | 5116 | 12161 | 1793 | 6872 | 10328 | 86 | 10454 | 7912 | 4456 | 12784 | 2416 | 6196 | 9652 | 713 | 11081 | 7952 | 4496 | 12830 | 2462 |
7016 | 3560 | 12168 | 1800 | 6840 | 10296 | 92 | 10460 | 8556 | 5100 | 13715 | 3347 | 5936 | 9392 | 720 | 11088 | 7920 | 4464 | 12836 | 2468 | 6180 | 9636 | 971 | 11339 |
12200 | 1832 | 6984 | 3528 | 1656 | 12024 | 5276 | 8732 | 13740 | 3372 | 8531 | 5075 | 752 | 11120 | 5904 | 9360 | 13104 | 2736 | 7652 | 4196 | 996 | 11364 | 6155 | 9611 |
1189 | 11557 | 5759 | 9215 | 13252 | 2884 | 7467 | 4011 | 1168 | 11536 | 5728 | 9184 | 13501 | 3133 | 7271 | 3815 | 1372 | 11740 | 5523 | 8979 | 13480 | 3112 | 7240 | 3784 |
6373 | 9829 | 575 | 10943 | 8068 | 4612 | 12651 | 2283 | 6352 | 9808 | 544 | 10912 | 8317 | 4861 | 12455 | 2087 | 6556 | 10012 | 339 | 10707 | 8296 | 4840 | 12424 | 2056 |
7431 | 3975 | 13332 | 2964 | 5665 | 9121 | 1250 | 11618 | 7407 | 3951 | 13302 | 2934 | 5487 | 8943 | 1452 | 11820 | 7177 | 3721 | 13562 | 3194 | 5463 | 8919 | 1422 | 11790 |
12615 | 2247 | 8148 | 4692 | 481 | 10849 | 6434 | 9890 | 12591 | 2223 | 8118 | 4662 | 303 | 10671 | 6636 | 10092 | 12361 | 1993 | 8378 | 4922 | 279 | 10647 | 6606 | 10062 |
1220 | 11588 | 5790 | 9246 | 13228 | 2860 | 7494 | 4038 | 1133 | 11501 | 5698 | 9154 | 13532 | 3164 | 7302 | 3846 | 1348 | 11716 | 5550 | 9006 | 13445 | 3077 | 7210 | 3754 |
6404 | 9860 | 606 | 10974 | 8044 | 4588 | 12678 | 2310 | 6317 | 9773 | 514 | 10882 | 8348 | 4892 | 12486 | 2118 | 6532 | 9988 | 366 | 10734 | 8261 | 4805 | 12394 | 2026 |
7419 | 3963 | 12594 | 2226 | 6446 | 9902 | 483 | 10851 | 8131 | 4675 | 13314 | 2946 | 5475 | 8931 | 282 | 10650 | 8390 | 4934 | 12363 | 1995 | 6619 | 10075 | 1434 | 11802 |
12603 | 2235 | 7410 | 3954 | 1262 | 11630 | 5667 | 9123 | 13315 | 2947 | 8130 | 4674 | 291 | 10659 | 5466 | 8922 | 13574 | 3206 | 7179 | 3723 | 1435 | 11803 | 6618 | 10074 |
568 | 10936 | 6304 | 9760 | 12676 | 2308 | 8057 | 4601 | 608 | 10976 | 6350 | 9806 | 12448 | 2080 | 8248 | 4792 | 364 | 10732 | 6545 | 10001 | 12488 | 2120 | 8294 | 4838 |
5752 | 9208 | 1120 | 11488 | 7492 | 4036 | 13241 | 2873 | 5792 | 9248 | 1166 | 11534 | 7264 | 3808 | 13432 | 3064 | 5548 | 9004 | 1361 | 11729 | 7304 | 3848 | 13478 | 3110 |
8096 | 4640 | 13248 | 2880 | 5760 | 9216 | 1172 | 11540 | 7476 | 4020 | 12635 | 2267 | 6584 | 10040 | 1368 | 11736 | 7272 | 3816 | 13484 | 3116 | 5532 | 8988 | 323 | 10691 |
13280 | 2912 | 8064 | 4608 | 576 | 10944 | 6356 | 9812 | 12660 | 2292 | 7451 | 3995 | 1400 | 11768 | 6552 | 10008 | 12456 | 2088 | 8300 | 4844 | 348 | 10716 | 5507 | 8963 |
See for all levels and check if all the numbers are in the magic cube and addition of the numbers give the right magic cube, the download below.
With method of Medjig you can construct a magic cube of even order. See on this website the construction of:
6x6x6 (simple), 8x8x8 (pantriagonal), 10x10x10 (simple), 10x10x10 (pantriagonal), 12x12x12 (pantriagonal), 14x14x14 (pantriagonal), 16x16x16 (Nasik), 20x20x20 (pantriagonal), 22x22x22 (pantriagonal), 24x24x24 (diagonal), 24x24x24 (pantriagonal), 26x26x26 (pantriagonal), 28x28x28 (pantriagonal) and 32x32x32 (Nasik)