Use a specific 7x7 magic square and its row- or column grid to construct a 7x7x7 pantriagonal magic cube.
First we construct the symmetric (but not pan)magic 7x7 square.
Take 1x number from first grid
4 | 5 | 6 | 0 | 1 | 2 | 3 |
5 | 6 | 0 | 1 | 2 | 3 | 4 |
6 | 0 | 1 | 2 | 3 | 4 | 5 |
0 | 1 | 2 | 3 | 4 | 5 | 6 |
1 | 2 | 3 | 4 | 5 | 6 | 0 |
2 | 3 | 4 | 5 | 6 | 0 | 1 |
3 | 4 | 5 | 6 | 0 | 1 | 2 |
+7x number from second grid (= first grid turned by a quarter to left)
3 | 4 | 5 | 6 | 0 | 1 | 2 |
2 | 3 | 4 | 5 | 6 | 0 | 1 |
1 | 2 | 3 | 4 | 5 | 6 | 0 |
0 | 1 | 2 | 3 | 4 | 5 | 6 |
6 | 0 | 1 | 2 | 3 | 4 | 5 |
5 | 6 | 0 | 1 | 2 | 3 | 4 |
4 | 5 | 6 | 0 | 1 | 2 | 3 |
= 7x7 symmetric magic square
26 | 34 | 42 | 43 | 2 | 10 | 18 |
20 | 28 | 29 | 37 | 45 | 4 | 12 |
14 | 15 | 23 | 31 | 39 | 47 | 6 |
1 | 9 | 17 | 25 | 33 | 41 | 49 |
44 | 3 | 11 | 19 | 27 | 35 | 36 |
38 | 46 | 5 | 13 | 21 | 22 | 30 |
32 | 40 | 48 | 7 | 8 | 16 | 24 |
We use the 7x7 magic square and its row- or column grid to construct the middle level (4) of the 7x7x7 pantriagonal magic cube. The grids of the remaining levels are horizontal or vertical shifts of level 4. See below the grids and the result.
Take 1x number from first grid
175 | 175 | 175 | 175 | 175 | 175 | 175 | ||
1 | ||||||||
175 | 44 | 3 | 11 | 19 | 27 | 35 | 36 | |
175 | 38 | 46 | 5 | 13 | 21 | 22 | 30 | |
175 | 32 | 40 | 48 | 7 | 8 | 16 | 24 | |
175 | 26 | 34 | 42 | 43 | 2 | 10 | 18 | |
175 | 20 | 28 | 29 | 37 | 45 | 4 | 12 | |
175 | 14 | 15 | 23 | 31 | 39 | 47 | 6 | |
175 | 1 | 9 | 17 | 25 | 33 | 41 | 49 | |
175 | 175 | 175 | 175 | 175 | 175 | 175 | ||
2 | ||||||||
175 | 38 | 46 | 5 | 13 | 21 | 22 | 30 | |
175 | 32 | 40 | 48 | 7 | 8 | 16 | 24 | |
175 | 26 | 34 | 42 | 43 | 2 | 10 | 18 | |
175 | 20 | 28 | 29 | 37 | 45 | 4 | 12 | |
175 | 14 | 15 | 23 | 31 | 39 | 47 | 6 | |
175 | 1 | 9 | 17 | 25 | 33 | 41 | 49 | |
175 | 44 | 3 | 11 | 19 | 27 | 35 | 36 | |
175 | 175 | 175 | 175 | 175 | 175 | 175 | ||
3 | ||||||||
175 | 32 | 40 | 48 | 7 | 8 | 16 | 24 | |
175 | 26 | 34 | 42 | 43 | 2 | 10 | 18 | |
175 | 20 | 28 | 29 | 37 | 45 | 4 | 12 | |
175 | 14 | 15 | 23 | 31 | 39 | 47 | 6 | |
175 | 1 | 9 | 17 | 25 | 33 | 41 | 49 | |
175 | 44 | 3 | 11 | 19 | 27 | 35 | 36 | |
175 | 38 | 46 | 5 | 13 | 21 | 22 | 30 | |
175 | 175 | 175 | 175 | 175 | 175 | 175 | ||
4 | ||||||||
175 | 26 | 34 | 42 | 43 | 2 | 10 | 18 | |
175 | 20 | 28 | 29 | 37 | 45 | 4 | 12 | |
175 | 14 | 15 | 23 | 31 | 39 | 47 | 6 | |
175 | 1 | 9 | 17 | 25 | 33 | 41 | 49 | |
175 | 44 | 3 | 11 | 19 | 27 | 35 | 36 | |
175 | 38 | 46 | 5 | 13 | 21 | 22 | 30 | |
175 | 32 | 40 | 48 | 7 | 8 | 16 | 24 | |
175 | 175 | 175 | 175 | 175 | 175 | 175 | ||
5 | ||||||||
175 | 20 | 28 | 29 | 37 | 45 | 4 | 12 | |
175 | 14 | 15 | 23 | 31 | 39 | 47 | 6 | |
175 | 1 | 9 | 17 | 25 | 33 | 41 | 49 | |
175 | 44 | 3 | 11 | 19 | 27 | 35 | 36 | |
175 | 38 | 46 | 5 | 13 | 21 | 22 | 30 | |
175 | 32 | 40 | 48 | 7 | 8 | 16 | 24 | |
175 | 26 | 34 | 42 | 43 | 2 | 10 | 18 | |
175 | 175 | 175 | 175 | 175 | 175 | 175 | ||
6 | ||||||||
175 | 14 | 15 | 23 | 31 | 39 | 47 | 6 | |
175 | 1 | 9 | 17 | 25 | 33 | 41 | 49 | |
175 | 44 | 3 | 11 | 19 | 27 | 35 | 36 | |
175 | 38 | 46 | 5 | 13 | 21 | 22 | 30 | |
175 | 32 | 40 | 48 | 7 | 8 | 16 | 24 | |
175 | 26 | 34 | 42 | 43 | 2 | 10 | 18 | |
175 | 20 | 28 | 29 | 37 | 45 | 4 | 12 | |
175 | 175 | 175 | 175 | 175 | 175 | 175 | ||
7 | ||||||||
175 | 1 | 9 | 17 | 25 | 33 | 41 | 49 | |
175 | 44 | 3 | 11 | 19 | 27 | 35 | 36 | |
175 | 38 | 46 | 5 | 13 | 21 | 22 | 30 | |
175 | 32 | 40 | 48 | 7 | 8 | 16 | 24 | |
175 | 26 | 34 | 42 | 43 | 2 | 10 | 18 | |
175 | 20 | 28 | 29 | 37 | 45 | 4 | 12 | |
175 | 14 | 15 | 23 | 31 | 39 | 47 | 6 |
+49x number from second grid
21 | 21 | 21 | 21 | 21 | 21 | 21 | ||
1 | ||||||||
21 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
21 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | |
21 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | |
21 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | |
21 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | |
21 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | |
21 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | |
2 | ||||||||
21 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | |
21 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
21 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | |
21 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | |
21 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | |
21 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | |
21 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | |
3 | ||||||||
21 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | |
21 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | |
21 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
21 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | |
21 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | |
21 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | |
21 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | |
4 | ||||||||
21 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | |
21 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | |
21 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | |
21 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
21 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | |
21 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | |
21 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | |
5 | ||||||||
21 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | |
21 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | |
21 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | |
21 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | |
21 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
21 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | |
21 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | |
6 | ||||||||
21 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | |
21 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | |
21 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | |
21 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | |
21 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | |
21 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |
21 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | |
7 | ||||||||
21 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | |
21 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | |
21 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | |
21 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | |
21 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | |
21 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | |
21 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
= 7x7x7 pantriagonal magic cube
1204 | 1204 | 1204 | 1204 | 1204 | 1204 | 1204 | ||
1 | ||||||||
1204 | 44 | 52 | 109 | 166 | 223 | 280 | 330 | |
1204 | 87 | 144 | 152 | 209 | 266 | 316 | 30 | |
1204 | 130 | 187 | 244 | 252 | 302 | 16 | 73 | |
1204 | 173 | 230 | 287 | 337 | 2 | 59 | 116 | |
1204 | 216 | 273 | 323 | 37 | 94 | 102 | 159 | |
1204 | 259 | 309 | 23 | 80 | 137 | 194 | 202 | |
1204 | 295 | 9 | 66 | 123 | 180 | 237 | 294 | |
2 | ||||||||
1204 | 332 | 46 | 54 | 111 | 168 | 218 | 275 | |
1204 | 32 | 89 | 146 | 154 | 204 | 261 | 318 | |
1204 | 75 | 132 | 189 | 239 | 247 | 304 | 18 | |
1204 | 118 | 175 | 225 | 282 | 339 | 4 | 61 | |
1204 | 161 | 211 | 268 | 325 | 39 | 96 | 104 | |
1204 | 197 | 254 | 311 | 25 | 82 | 139 | 196 | |
1204 | 289 | 297 | 11 | 68 | 125 | 182 | 232 | |
3 | ||||||||
1204 | 277 | 334 | 48 | 56 | 106 | 163 | 220 | |
1204 | 320 | 34 | 91 | 141 | 149 | 206 | 263 | |
1204 | 20 | 77 | 127 | 184 | 241 | 249 | 306 | |
1204 | 63 | 113 | 170 | 227 | 284 | 341 | 6 | |
1204 | 99 | 156 | 213 | 270 | 327 | 41 | 98 | |
1204 | 191 | 199 | 256 | 313 | 27 | 84 | 134 | |
1204 | 234 | 291 | 299 | 13 | 70 | 120 | 177 | |
4 | ||||||||
1204 | 222 | 279 | 336 | 43 | 51 | 108 | 165 | |
1204 | 265 | 322 | 29 | 86 | 143 | 151 | 208 | |
1204 | 308 | 15 | 72 | 129 | 186 | 243 | 251 | |
1204 | 1 | 58 | 115 | 172 | 229 | 286 | 343 | |
1204 | 93 | 101 | 158 | 215 | 272 | 329 | 36 | |
1204 | 136 | 193 | 201 | 258 | 315 | 22 | 79 | |
1204 | 179 | 236 | 293 | 301 | 8 | 65 | 122 | |
5 | ||||||||
1204 | 167 | 224 | 274 | 331 | 45 | 53 | 110 | |
1204 | 210 | 260 | 317 | 31 | 88 | 145 | 153 | |
1204 | 246 | 303 | 17 | 74 | 131 | 188 | 245 | |
1204 | 338 | 3 | 60 | 117 | 174 | 231 | 281 | |
1204 | 38 | 95 | 103 | 160 | 217 | 267 | 324 | |
1204 | 81 | 138 | 195 | 203 | 253 | 310 | 24 | |
1204 | 124 | 181 | 238 | 288 | 296 | 10 | 67 | |
6 | ||||||||
1204 | 112 | 162 | 219 | 276 | 333 | 47 | 55 | |
1204 | 148 | 205 | 262 | 319 | 33 | 90 | 147 | |
1204 | 240 | 248 | 305 | 19 | 76 | 133 | 183 | |
1204 | 283 | 340 | 5 | 62 | 119 | 169 | 226 | |
1204 | 326 | 40 | 97 | 105 | 155 | 212 | 269 | |
1204 | 26 | 83 | 140 | 190 | 198 | 255 | 312 | |
1204 | 69 | 126 | 176 | 233 | 290 | 298 | 12 | |
7 | ||||||||
1204 | 50 | 107 | 164 | 221 | 278 | 335 | 49 | |
1204 | 142 | 150 | 207 | 264 | 321 | 35 | 85 | |
1204 | 185 | 242 | 250 | 307 | 21 | 71 | 128 | |
1204 | 228 | 285 | 342 | 7 | 57 | 114 | 171 | |
1204 | 271 | 328 | 42 | 92 | 100 | 157 | 214 | |
1204 | 314 | 28 | 78 | 135 | 192 | 200 | 257 | |
1204 | 14 | 64 | 121 | 178 | 235 | 292 | 300 |
See for check if all numbers are in the magic cube and addition of the numbers give the right magic sum, the download below.
With method composite 1 you use a magic square to construct a magic cube. See on this website the construction of:
3x3x3 (simple), 4x4x4 (most perfect), 5x5x5 (pantriagonal), 7x7x7 (pantriagonal),
9x9x9 (pandiagonal & compact), 12x12x12 (diagonal), 12x12x12 (pantriagonal),
15x15x15 (pandiagonal & compact), 16x16x16 (Nasik)a, 16x16x16 (Nasik)b,
20x20x20 (diagonal), 20x20x20 (pantriagonal), 24x24x24 (diagonal), 24x24x24
(pantriagonal), 28x28x28 (diagonal), 28x28x28 (pantriagonal)