Met de methode van Strachey wordt het 14x14 magische vierkant opgebouwd uit een 2x2 tapijt van een magisch 7x7 vierkant, waarna er getallen worden omgewisseld om het magisch vierkant kloppend te krijgen. Met de alternatieve methode van Strachey wordt het 14x14 magisch vierkant ook opgebouwd uit 4 (pan)magische 7x7 vierkanten. Deze 7x7 magische vierkanten zijn echter meer evenredig gemaakt, waarna er minder getallen hoeven worden omgewisseld.
Neem voor het maken van de 4 panmagische 7x7 vierkanten als rijcoördinaten telkens de getallen 0 t/m 6 en neem als kolomcoördinaten de getallen 0 t/m (7 x 4 -/- 1 = ) 27.
7x kolomcoördinaat + 1x rijcoördinaat + 1 = panmagisch 7x7 vierkant
686 | 686 | 686 | 686 | 686 | 686 | 686 | ||||||||||||||||||
686 | 686 | |||||||||||||||||||||||
1 | 6 | 9 | 14 | 17 | 20 | 27 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 44 | 66 | 102 | 124 | 146 | 196 | 686 | |||
20 | 27 | 1 | 6 | 9 | 14 | 17 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 143 | 193 | 12 | 48 | 70 | 99 | 121 | 686 | |||
14 | 17 | 20 | 27 | 1 | 6 | 9 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 103 | 125 | 147 | 190 | 9 | 45 | 67 | 686 | |||
6 | 9 | 14 | 17 | 20 | 27 | 1 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 49 | 64 | 100 | 122 | 144 | 194 | 13 | 686 | |||
27 | 1 | 6 | 9 | 14 | 17 | 20 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 191 | 10 | 46 | 68 | 104 | 126 | 141 | 686 | |||
17 | 20 | 27 | 1 | 6 | 9 | 14 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 123 | 145 | 195 | 14 | 43 | 65 | 101 | 686 | |||
9 | 14 | 17 | 20 | 27 | 1 | 6 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 69 | 105 | 120 | 142 | 192 | 11 | 47 | 686 | |||
686 | 686 | 686 | 686 | 686 | 686 | 686 | ||||||||||||||||||
686 | 686 | |||||||||||||||||||||||
2 | 5 | 10 | 13 | 18 | 22 | 24 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 15 | 37 | 73 | 95 | 131 | 160 | 175 | 686 | |||
22 | 24 | 2 | 5 | 10 | 13 | 18 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 157 | 172 | 19 | 41 | 77 | 92 | 128 | 686 | |||
13 | 18 | 22 | 24 | 2 | 5 | 10 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 96 | 132 | 161 | 169 | 16 | 38 | 74 | 686 | |||
5 | 10 | 13 | 18 | 22 | 24 | 2 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 42 | 71 | 93 | 129 | 158 | 173 | 20 | 686 | |||
24 | 2 | 5 | 10 | 13 | 18 | 22 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 170 | 17 | 39 | 75 | 97 | 133 | 155 | 686 | |||
18 | 22 | 24 | 2 | 5 | 10 | 13 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 130 | 159 | 174 | 21 | 36 | 72 | 94 | 686 | |||
10 | 13 | 18 | 22 | 24 | 2 | 5 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 76 | 98 | 127 | 156 | 171 | 18 | 40 | 686 | |||
693 | 693 | 693 | 693 | 693 | 693 | 693 | ||||||||||||||||||
693 | 693 | |||||||||||||||||||||||
0 | 7 | 8 | 15 | 16 | 23 | 26 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 51 | 59 | 109 | 117 | 167 | 189 | 693 | |||
23 | 26 | 0 | 7 | 8 | 15 | 16 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 164 | 186 | 5 | 55 | 63 | 106 | 114 | 693 | |||
15 | 16 | 23 | 26 | 0 | 7 | 8 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 110 | 118 | 168 | 183 | 2 | 52 | 60 | 693 | |||
7 | 8 | 15 | 16 | 23 | 26 | 0 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 56 | 57 | 107 | 115 | 165 | 187 | 6 | 693 | |||
26 | 0 | 7 | 8 | 15 | 16 | 23 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 184 | 3 | 53 | 61 | 111 | 119 | 162 | 693 | |||
16 | 23 | 26 | 0 | 7 | 8 | 15 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 116 | 166 | 188 | 7 | 50 | 58 | 108 | 693 | |||
8 | 15 | 16 | 23 | 26 | 0 | 7 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 62 | 112 | 113 | 163 | 185 | 4 | 54 | 693 | |||
693 | 693 | 693 | 693 | 693 | 693 | 693 | ||||||||||||||||||
693 | 693 | |||||||||||||||||||||||
3 | 4 | 11 | 12 | 19 | 21 | 25 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 22 | 30 | 80 | 88 | 138 | 153 | 182 | 693 | |||
21 | 25 | 3 | 4 | 11 | 12 | 19 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 150 | 179 | 26 | 34 | 84 | 85 | 135 | 693 | |||
12 | 19 | 21 | 25 | 3 | 4 | 11 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 89 | 139 | 154 | 176 | 23 | 31 | 81 | 693 | |||
4 | 11 | 12 | 19 | 21 | 25 | 3 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 35 | 78 | 86 | 136 | 151 | 180 | 27 | 693 | |||
25 | 3 | 4 | 11 | 12 | 19 | 21 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 177 | 24 | 32 | 82 | 90 | 140 | 148 | 693 | |||
19 | 21 | 25 | 3 | 4 | 11 | 12 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 137 | 152 | 181 | 28 | 29 | 79 | 87 | 693 | |||
11 | 12 | 19 | 21 | 25 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 83 | 91 | 134 | 149 | 178 | 25 | 33 | 693 |
‘Plak’ de 4 panmagische 7x7 vierkanten aan elkaar.
Te corrigeren (semi) magisch 14x14 vierkant
1379 |
1379 |
1379 |
1379 |
1379 |
1379 |
1379 |
1379 |
1379 |
1379 |
1379 |
1379 |
1379 |
1379 |
|||
1386 |
1372 |
|||||||||||||||
1379 |
1 |
51 |
59 |
109 |
117 |
167 |
189 |
8 |
44 |
66 |
102 |
124 |
146 |
196 |
||
1379 |
164 |
186 |
5 |
55 |
63 |
106 |
114 |
143 |
193 |
12 |
48 |
70 |
99 |
121 |
||
1379 |
110 |
118 |
168 |
183 |
2 |
52 |
60 |
103 |
125 |
147 |
190 |
9 |
45 |
67 |
||
1379 |
56 |
57 |
107 |
115 |
165 |
187 |
6 |
49 |
64 |
100 |
122 |
144 |
194 |
13 |
||
1379 |
184 |
3 |
53 |
61 |
111 |
119 |
162 |
191 |
10 |
46 |
68 |
104 |
126 |
141 |
||
1379 |
116 |
166 |
188 |
7 |
50 |
58 |
108 |
123 |
145 |
195 |
14 |
43 |
65 |
101 |
||
1379 |
62 |
112 |
113 |
163 |
185 |
4 |
54 |
69 |
105 |
120 |
142 |
192 |
11 |
47 |
||
1379 |
15 |
37 |
73 |
95 |
131 |
160 |
175 |
22 |
30 |
80 |
88 |
138 |
153 |
182 |
||
1379 |
157 |
172 |
19 |
41 |
77 |
92 |
128 |
150 |
179 |
26 |
34 |
84 |
85 |
135 |
||
1379 |
96 |
132 |
161 |
169 |
16 |
38 |
74 |
89 |
139 |
154 |
176 |
23 |
31 |
81 |
||
1379 |
42 |
71 |
93 |
129 |
158 |
173 |
20 |
35 |
78 |
86 |
136 |
151 |
180 |
27 |
||
1379 |
170 |
17 |
39 |
75 |
97 |
133 |
155 |
177 |
24 |
32 |
82 |
90 |
140 |
148 |
||
1379 |
130 |
159 |
174 |
21 |
36 |
72 |
94 |
137 |
152 |
181 |
28 |
29 |
79 |
87 |
||
1379 |
76 |
98 |
127 |
156 |
171 |
18 |
40 |
83 |
91 |
134 |
149 |
178 |
25 |
33 |
14x14 magisch vierkant
1379 |
1379 |
1379 |
1379 |
1379 |
1379 |
1379 |
1379 |
1379 |
1379 |
1379 |
1379 |
1379 |
1379 |
|||
1379 |
1379 |
|||||||||||||||
1379 |
1 |
51 |
59 |
109 |
117 |
167 |
189 |
8 |
44 |
66 |
102 |
124 |
146 |
196 |
||
1379 |
164 |
186 |
5 |
55 |
63 |
106 |
114 |
143 |
193 |
12 |
48 |
70 |
99 |
121 |
||
1379 |
110 |
118 |
168 |
183 |
2 |
52 |
60 |
103 |
125 |
147 |
190 |
9 |
45 |
67 |
||
1379 |
56 |
57 |
107 |
115 |
165 |
187 |
6 |
49 |
64 |
100 |
122 |
144 |
194 |
13 |
||
1379 |
184 |
3 |
53 |
61 |
111 |
119 |
162 |
191 |
10 |
46 |
68 |
104 |
126 |
141 |
||
1379 |
116 |
166 |
188 |
7 |
50 |
58 |
108 |
123 |
145 |
195 |
14 |
43 |
65 |
101 |
||
1379 |
62 |
112 |
113 |
163 |
185 |
4 |
54 |
69 |
105 |
120 |
142 |
192 |
11 |
47 |
||
1379 |
15 |
37 |
73 |
95 |
131 |
160 |
175 |
22 |
30 |
80 |
88 |
138 |
153 |
182 |
||
1379 |
157 |
172 |
19 |
41 |
77 |
92 |
128 |
150 |
179 |
26 |
34 |
84 |
85 |
135 |
||
1379 |
96 |
132 |
161 |
169 |
16 |
38 |
74 |
89 |
139 |
154 |
176 |
23 |
31 |
81 |
||
1379 |
42 |
71 |
93 |
136 |
158 |
173 |
20 |
35 |
78 |
86 |
129 |
151 |
180 |
27 |
||
1379 |
170 |
17 |
39 |
75 |
97 |
133 |
155 |
177 |
24 |
32 |
82 |
90 |
140 |
148 |
||
1379 |
130 |
159 |
174 |
21 |
36 |
72 |
94 |
137 |
152 |
181 |
28 |
29 |
79 |
87 |
||
1379 |
76 |
98 |
127 |
149 |
171 |
18 |
40 |
83 |
91 |
134 |
156 |
178 |
25 |
33 |
Deze methode werkt voor grootte is dubbel oneven; zie uitgewerkt voor 6x6, 10x10, 14x14, 18x18, 22x22, 26x26 en 30x30