Je kunt het 16x16 magisch vierkant opbouwen uit 4 evenredige Franklin panmagische 8x8 vierkanten. Evenredig betekent dat alle 4 Franklin panmagische 8x8 vierkanten dezelfde magische som van (1/2 x 2056 = ) 1028 hebben. We gebruiken de basissleutel methode (8x8) voor het maken van de Franklin panmagische 8x8 vierkanten. Alleen gebruiken we nu als rijcoördinaten niet de getallen 0 t/m 7 maar 0 t/m (4x8 -/- 1 = ) 31 en we verdelen de rijcoördinaten evenredig over de 4 Franklin panmagische 8x8 vierkanten.
1x rijcoördinaat +32x kolomcoördinaat + 1 = Franklin panm. 8x8 vierkant
0 | 7 | 31 | 24 | 8 | 15 | 23 | 16 | 0 | 7 | 0 | 7 | 0 | 7 | 0 | 7 | 1 | 232 | 32 | 249 | 9 | 240 | 24 | 241 | ||
31 | 24 | 0 | 7 | 23 | 16 | 8 | 15 | 1 | 6 | 1 | 6 | 1 | 6 | 1 | 6 | 64 | 217 | 33 | 200 | 56 | 209 | 41 | 208 | ||
0 | 7 | 31 | 24 | 8 | 15 | 23 | 16 | 7 | 0 | 7 | 0 | 7 | 0 | 7 | 0 | 225 | 8 | 256 | 25 | 233 | 16 | 248 | 17 | ||
31 | 24 | 0 | 7 | 23 | 16 | 8 | 15 | 6 | 1 | 6 | 1 | 6 | 1 | 6 | 1 | 224 | 57 | 193 | 40 | 216 | 49 | 201 | 48 | ||
0 | 7 | 31 | 24 | 8 | 15 | 23 | 16 | 2 | 5 | 2 | 5 | 2 | 5 | 2 | 5 | 65 | 168 | 96 | 185 | 73 | 176 | 88 | 177 | ||
31 | 24 | 0 | 7 | 23 | 16 | 8 | 15 | 3 | 4 | 3 | 4 | 3 | 4 | 3 | 4 | 128 | 153 | 97 | 136 | 120 | 145 | 105 | 144 | ||
0 | 7 | 31 | 24 | 8 | 15 | 23 | 16 | 5 | 2 | 5 | 2 | 5 | 2 | 5 | 2 | 161 | 72 | 192 | 89 | 169 | 80 | 184 | 81 | ||
31 | 24 | 0 | 7 | 23 | 16 | 8 | 15 | 4 | 3 | 4 | 3 | 4 | 3 | 4 | 3 | 160 | 121 | 129 | 104 | 152 | 113 | 137 | 112 | ||
1 | 6 | 30 | 25 | 9 | 14 | 22 | 17 | 0 | 7 | 0 | 7 | 0 | 7 | 0 | 7 | 2 | 231 | 31 | 250 | 10 | 239 | 23 | 242 | ||
30 | 25 | 1 | 6 | 22 | 17 | 9 | 14 | 1 | 6 | 1 | 6 | 1 | 6 | 1 | 6 | 63 | 218 | 34 | 199 | 55 | 210 | 42 | 207 | ||
1 | 6 | 30 | 25 | 9 | 14 | 22 | 17 | 7 | 0 | 7 | 0 | 7 | 0 | 7 | 0 | 226 | 7 | 255 | 26 | 234 | 15 | 247 | 18 | ||
30 | 25 | 1 | 6 | 22 | 17 | 9 | 14 | 6 | 1 | 6 | 1 | 6 | 1 | 6 | 1 | 223 | 58 | 194 | 39 | 215 | 50 | 202 | 47 | ||
1 | 6 | 30 | 25 | 9 | 14 | 22 | 17 | 2 | 5 | 2 | 5 | 2 | 5 | 2 | 5 | 66 | 167 | 95 | 186 | 74 | 175 | 87 | 178 | ||
30 | 25 | 1 | 6 | 22 | 17 | 9 | 14 | 3 | 4 | 3 | 4 | 3 | 4 | 3 | 4 | 127 | 154 | 98 | 135 | 119 | 146 | 106 | 143 | ||
1 | 6 | 30 | 25 | 9 | 14 | 22 | 17 | 5 | 2 | 5 | 2 | 5 | 2 | 5 | 2 | 162 | 71 | 191 | 90 | 170 | 79 | 183 | 82 | ||
30 | 25 | 1 | 6 | 22 | 17 | 9 | 14 | 4 | 3 | 4 | 3 | 4 | 3 | 4 | 3 | 159 | 122 | 130 | 103 | 151 | 114 | 138 | 111 | ||
2 | 5 | 29 | 26 | 10 | 13 | 21 | 18 | 0 | 7 | 0 | 7 | 0 | 7 | 0 | 7 | 3 | 230 | 30 | 251 | 11 | 238 | 22 | 243 | ||
29 | 26 | 2 | 5 | 21 | 18 | 10 | 13 | 1 | 6 | 1 | 6 | 1 | 6 | 1 | 6 | 62 | 219 | 35 | 198 | 54 | 211 | 43 | 206 | ||
2 | 5 | 29 | 26 | 10 | 13 | 21 | 18 | 7 | 0 | 7 | 0 | 7 | 0 | 7 | 0 | 227 | 6 | 254 | 27 | 235 | 14 | 246 | 19 | ||
29 | 26 | 2 | 5 | 21 | 18 | 10 | 13 | 6 | 1 | 6 | 1 | 6 | 1 | 6 | 1 | 222 | 59 | 195 | 38 | 214 | 51 | 203 | 46 | ||
2 | 5 | 29 | 26 | 10 | 13 | 21 | 18 | 2 | 5 | 2 | 5 | 2 | 5 | 2 | 5 | 67 | 166 | 94 | 187 | 75 | 174 | 86 | 179 | ||
29 | 26 | 2 | 5 | 21 | 18 | 10 | 13 | 3 | 4 | 3 | 4 | 3 | 4 | 3 | 4 | 126 | 155 | 99 | 134 | 118 | 147 | 107 | 142 | ||
2 | 5 | 29 | 26 | 10 | 13 | 21 | 18 | 5 | 2 | 5 | 2 | 5 | 2 | 5 | 2 | 163 | 70 | 190 | 91 | 171 | 78 | 182 | 83 | ||
29 | 26 | 2 | 5 | 21 | 18 | 10 | 13 | 4 | 3 | 4 | 3 | 4 | 3 | 4 | 3 | 158 | 123 | 131 | 102 | 150 | 115 | 139 | 110 | ||
3 | 4 | 28 | 27 | 11 | 12 | 20 | 19 | 0 | 7 | 0 | 7 | 0 | 7 | 0 | 7 | 4 | 229 | 29 | 252 | 12 | 237 | 21 | 244 | ||
28 | 27 | 3 | 4 | 20 | 19 | 11 | 12 | 1 | 6 | 1 | 6 | 1 | 6 | 1 | 6 | 61 | 220 | 36 | 197 | 53 | 212 | 44 | 205 | ||
3 | 4 | 28 | 27 | 11 | 12 | 20 | 19 | 7 | 0 | 7 | 0 | 7 | 0 | 7 | 0 | 228 | 5 | 253 | 28 | 236 | 13 | 245 | 20 | ||
28 | 27 | 3 | 4 | 20 | 19 | 11 | 12 | 6 | 1 | 6 | 1 | 6 | 1 | 6 | 1 | 221 | 60 | 196 | 37 | 213 | 52 | 204 | 45 | ||
3 | 4 | 28 | 27 | 11 | 12 | 20 | 19 | 2 | 5 | 2 | 5 | 2 | 5 | 2 | 5 | 68 | 165 | 93 | 188 | 76 | 173 | 85 | 180 | ||
28 | 27 | 3 | 4 | 20 | 19 | 11 | 12 | 3 | 4 | 3 | 4 | 3 | 4 | 3 | 4 | 125 | 156 | 100 | 133 | 117 | 148 | 108 | 141 | ||
3 | 4 | 28 | 27 | 11 | 12 | 20 | 19 | 5 | 2 | 5 | 2 | 5 | 2 | 5 | 2 | 164 | 69 | 189 | 92 | 172 | 77 | 181 | 84 | ||
28 | 27 | 3 | 4 | 20 | 19 | 11 | 12 | 4 | 3 | 4 | 3 | 4 | 3 | 4 | 3 | 157 | 124 | 132 | 101 | 149 | 116 | 140 | 109 |
Voeg de 4 Franklin panmagische 8x8 vierkanten op volgorde samen.
16x16 magisch vierkant
1 | 232 | 32 | 249 | 9 | 240 | 24 | 241 | 2 | 231 | 31 | 250 | 10 | 239 | 23 | 242 |
64 | 217 | 33 | 200 | 56 | 209 | 41 | 208 | 63 | 218 | 34 | 199 | 55 | 210 | 42 | 207 |
225 | 8 | 256 | 25 | 233 | 16 | 248 | 17 | 226 | 7 | 255 | 26 | 234 | 15 | 247 | 18 |
224 | 57 | 193 | 40 | 216 | 49 | 201 | 48 | 223 | 58 | 194 | 39 | 215 | 50 | 202 | 47 |
65 | 168 | 96 | 185 | 73 | 176 | 88 | 177 | 66 | 167 | 95 | 186 | 74 | 175 | 87 | 178 |
128 | 153 | 97 | 136 | 120 | 145 | 105 | 144 | 127 | 154 | 98 | 135 | 119 | 146 | 106 | 143 |
161 | 72 | 192 | 89 | 169 | 80 | 184 | 81 | 162 | 71 | 191 | 90 | 170 | 79 | 183 | 82 |
160 | 121 | 129 | 104 | 152 | 113 | 137 | 112 | 159 | 122 | 130 | 103 | 151 | 114 | 138 | 111 |
3 | 230 | 30 | 251 | 11 | 238 | 22 | 243 | 4 | 229 | 29 | 252 | 12 | 237 | 21 | 244 |
62 | 219 | 35 | 198 | 54 | 211 | 43 | 206 | 61 | 220 | 36 | 197 | 53 | 212 | 44 | 205 |
227 | 6 | 254 | 27 | 235 | 14 | 246 | 19 | 228 | 5 | 253 | 28 | 236 | 13 | 245 | 20 |
222 | 59 | 195 | 38 | 214 | 51 | 203 | 46 | 221 | 60 | 196 | 37 | 213 | 52 | 204 | 45 |
67 | 166 | 94 | 187 | 75 | 174 | 86 | 179 | 68 | 165 | 93 | 188 | 76 | 173 | 85 | 180 |
126 | 155 | 99 | 134 | 118 | 147 | 107 | 142 | 125 | 156 | 100 | 133 | 117 | 148 | 108 | 141 |
163 | 70 | 190 | 91 | 171 | 78 | 182 | 83 | 164 | 69 | 189 | 92 | 172 | 77 | 181 | 84 |
158 | 123 | 131 | 102 | 150 | 115 | 139 | 110 | 157 | 124 | 132 | 101 | 149 | 116 | 140 | 109 |
Helaas is bovenstaand 16x16 magisch vierkant nog niet volledig 2x2 compact. We gebruiken de techniek van de Khajuraho methode om systematisch getallen om te wisselen.
Franklin panmagisch 16x16 vierkant
3 | 230 | 32 | 249 | 11 | 238 | 24 | 241 | 4 | 229 | 31 | 250 | 12 | 237 | 23 | 242 |
62 | 219 | 33 | 200 | 54 | 211 | 41 | 208 | 61 | 220 | 34 | 199 | 53 | 212 | 42 | 207 |
225 | 8 | 254 | 27 | 233 | 16 | 246 | 19 | 226 | 7 | 253 | 28 | 234 | 15 | 245 | 20 |
224 | 57 | 195 | 38 | 216 | 49 | 203 | 46 | 223 | 58 | 196 | 37 | 215 | 50 | 204 | 45 |
67 | 166 | 96 | 185 | 75 | 174 | 88 | 177 | 68 | 165 | 95 | 186 | 76 | 173 | 87 | 178 |
126 | 155 | 97 | 136 | 118 | 147 | 105 | 144 | 125 | 156 | 98 | 135 | 117 | 148 | 106 | 143 |
161 | 72 | 190 | 91 | 169 | 80 | 182 | 83 | 162 | 71 | 189 | 92 | 170 | 79 | 181 | 84 |
160 | 121 | 131 | 102 | 152 | 113 | 139 | 110 | 159 | 122 | 132 | 101 | 151 | 114 | 140 | 109 |
1 | 232 | 30 | 251 | 9 | 240 | 22 | 243 | 2 | 231 | 29 | 252 | 10 | 239 | 21 | 244 |
64 | 217 | 35 | 198 | 56 | 209 | 43 | 206 | 63 | 218 | 36 | 197 | 55 | 210 | 44 | 205 |
227 | 6 | 256 | 25 | 235 | 14 | 248 | 17 | 228 | 5 | 255 | 26 | 236 | 13 | 247 | 18 |
222 | 59 | 193 | 40 | 214 | 51 | 201 | 48 | 221 | 60 | 194 | 39 | 213 | 52 | 202 | 47 |
65 | 168 | 94 | 187 | 73 | 176 | 86 | 179 | 66 | 167 | 93 | 188 | 74 | 175 | 85 | 180 |
128 | 153 | 99 | 134 | 120 | 145 | 107 | 142 | 127 | 154 | 100 | 133 | 119 | 146 | 108 | 141 |
163 | 70 | 192 | 89 | 171 | 78 | 184 | 81 | 164 | 69 | 191 | 90 | 172 | 77 | 183 | 82 |
158 | 123 | 129 | 104 | 150 | 115 | 137 | 112 | 157 | 124 | 130 | 103 | 149 | 116 | 138 | 111 |
Dit 16x16 magisch vierkant is panmagisch, (volledig) 2x2 compact en kloppend voor 1/4 rij/kolom/ diagonaal.
Zie methode samengesteld, proportioneel (1) op deze website uitgewerkt voor
8x8, 9x9, 12x12a, 12x12b, 15x15a, 15x15b, 16x16a, 16x16b, 18x18, 20x20a, 20x20b, 21x21a, 21x21b, 24x24a, 24x24b, 24x24c, 27x27a, 27x27b, 28x28a, 28x28b, 30x30a, 30x30b, 32x32a, 32x32b, 32x32c