We bouwen nu weer het 21x21 magisch vierkant op uit 9 panmagische 7x7 vierkanten, alleen zijn het dit keer 9 evenredige panmagische 7x57 vierkanten. Evenredig betekent dat alle 9 panmagisch 7x7 vierkanten dezelfde magische som van (1/3 x 4641 = ) 1647 hebben. We gebruiken de methode voor het maken van het panmagische 7x7 vierkant. Alleen gebruiken we nu als kolomcoördinaten niet de getallen 0 t/m 6 maar 0 t/m (9x7 -/- 1 = ) 62 en we verdelen de kolomcoördinaten evenredig over de 9 panmagische 7x7 vierkanten.
7x kolomcoördinaat + 1x rijcoördinaat + 1 = panmagisch 7x7 vierkant
0 | 15 | 21 | 35 | 38 | 46 | 62 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 1 | 107 | 150 | 249 | 271 | 328 | 441 | ||
21 | 35 | 38 | 46 | 62 | 0 | 15 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 153 | 252 | 267 | 324 | 437 | 4 | 110 | ||
38 | 46 | 62 | 0 | 15 | 21 | 35 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 270 | 327 | 440 | 7 | 106 | 149 | 248 | ||
62 | 0 | 15 | 21 | 35 | 38 | 46 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 436 | 3 | 109 | 152 | 251 | 273 | 323 | ||
15 | 21 | 35 | 38 | 46 | 62 | 0 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 112 | 148 | 247 | 269 | 326 | 439 | 6 | ||
35 | 38 | 46 | 62 | 0 | 15 | 21 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 250 | 272 | 329 | 435 | 2 | 108 | 151 | ||
46 | 62 | 0 | 15 | 21 | 35 | 38 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 325 | 438 | 5 | 111 | 154 | 246 | 268 | ||
1 | 16 | 22 | 34 | 37 | 47 | 60 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 114 | 157 | 242 | 264 | 335 | 427 | ||
22 | 34 | 37 | 47 | 60 | 1 | 16 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 160 | 245 | 260 | 331 | 423 | 11 | 117 | ||
37 | 47 | 60 | 1 | 16 | 22 | 34 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 263 | 334 | 426 | 14 | 113 | 156 | 241 | ||
60 | 1 | 16 | 22 | 34 | 37 | 47 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 422 | 10 | 116 | 159 | 244 | 266 | 330 | ||
16 | 22 | 34 | 37 | 47 | 60 | 1 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 119 | 155 | 240 | 262 | 333 | 425 | 13 | ||
34 | 37 | 47 | 60 | 1 | 16 | 22 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 243 | 265 | 336 | 421 | 9 | 115 | 158 | ||
47 | 60 | 1 | 16 | 22 | 34 | 37 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 332 | 424 | 12 | 118 | 161 | 239 | 261 | ||
2 | 17 | 23 | 33 | 36 | 45 | 61 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 15 | 121 | 164 | 235 | 257 | 321 | 434 | ||
23 | 33 | 36 | 45 | 61 | 2 | 17 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 167 | 238 | 253 | 317 | 430 | 18 | 124 | ||
36 | 45 | 61 | 2 | 17 | 23 | 33 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 256 | 320 | 433 | 21 | 120 | 163 | 234 | ||
61 | 2 | 17 | 23 | 33 | 36 | 45 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 429 | 17 | 123 | 166 | 237 | 259 | 316 | ||
17 | 23 | 33 | 36 | 45 | 61 | 2 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 126 | 162 | 233 | 255 | 319 | 432 | 20 | ||
33 | 36 | 45 | 61 | 2 | 17 | 23 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 236 | 258 | 322 | 428 | 16 | 122 | 165 | ||
45 | 61 | 2 | 17 | 23 | 33 | 36 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 318 | 431 | 19 | 125 | 168 | 232 | 254 | ||
3 | 9 | 24 | 32 | 44 | 49 | 56 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 22 | 65 | 171 | 228 | 313 | 349 | 399 | ||
24 | 32 | 44 | 49 | 56 | 3 | 9 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 174 | 231 | 309 | 345 | 395 | 25 | 68 | ||
44 | 49 | 56 | 3 | 9 | 24 | 32 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 312 | 348 | 398 | 28 | 64 | 170 | 227 | ||
56 | 3 | 9 | 24 | 32 | 44 | 49 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 394 | 24 | 67 | 173 | 230 | 315 | 344 | ||
9 | 24 | 32 | 44 | 49 | 56 | 3 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 70 | 169 | 226 | 311 | 347 | 397 | 27 | ||
32 | 44 | 49 | 56 | 3 | 9 | 24 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 229 | 314 | 350 | 393 | 23 | 66 | 172 | ||
49 | 56 | 3 | 9 | 24 | 32 | 44 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 346 | 396 | 26 | 69 | 175 | 225 | 310 | ||
4 | 10 | 25 | 31 | 43 | 50 | 54 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 29 | 72 | 178 | 221 | 306 | 356 | 385 | ||
25 | 31 | 43 | 50 | 54 | 4 | 10 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 181 | 224 | 302 | 352 | 381 | 32 | 75 | ||
43 | 50 | 54 | 4 | 10 | 25 | 31 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 305 | 355 | 384 | 35 | 71 | 177 | 220 | ||
54 | 4 | 10 | 25 | 31 | 43 | 50 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 380 | 31 | 74 | 180 | 223 | 308 | 351 | ||
10 | 25 | 31 | 43 | 50 | 54 | 4 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 77 | 176 | 219 | 304 | 354 | 383 | 34 | ||
31 | 43 | 50 | 54 | 4 | 10 | 25 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 222 | 307 | 357 | 379 | 30 | 73 | 179 | ||
50 | 54 | 4 | 10 | 25 | 31 | 43 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 353 | 382 | 33 | 76 | 182 | 218 | 303 | ||
5 | 11 | 26 | 30 | 42 | 48 | 55 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 36 | 79 | 185 | 214 | 299 | 342 | 392 | ||
26 | 30 | 42 | 48 | 55 | 5 | 11 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 188 | 217 | 295 | 338 | 388 | 39 | 82 | ||
42 | 48 | 55 | 5 | 11 | 26 | 30 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 298 | 341 | 391 | 42 | 78 | 184 | 213 | ||
55 | 5 | 11 | 26 | 30 | 42 | 48 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 387 | 38 | 81 | 187 | 216 | 301 | 337 | ||
11 | 26 | 30 | 42 | 48 | 55 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 84 | 183 | 212 | 297 | 340 | 390 | 41 | ||
30 | 42 | 48 | 55 | 5 | 11 | 26 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 215 | 300 | 343 | 386 | 37 | 80 | 186 | ||
48 | 55 | 5 | 11 | 26 | 30 | 42 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 339 | 389 | 40 | 83 | 189 | 211 | 296 | ||
6 | 12 | 18 | 29 | 41 | 52 | 59 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 43 | 86 | 129 | 207 | 292 | 370 | 420 | ||
18 | 29 | 41 | 52 | 59 | 6 | 12 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 132 | 210 | 288 | 366 | 416 | 46 | 89 | ||
41 | 52 | 59 | 6 | 12 | 18 | 29 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 291 | 369 | 419 | 49 | 85 | 128 | 206 | ||
59 | 6 | 12 | 18 | 29 | 41 | 52 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 415 | 45 | 88 | 131 | 209 | 294 | 365 | ||
12 | 18 | 29 | 41 | 52 | 59 | 6 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 91 | 127 | 205 | 290 | 368 | 418 | 48 | ||
29 | 41 | 52 | 59 | 6 | 12 | 18 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 208 | 293 | 371 | 414 | 44 | 87 | 130 | ||
52 | 59 | 6 | 12 | 18 | 29 | 41 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 367 | 417 | 47 | 90 | 133 | 204 | 289 | ||
7 | 13 | 19 | 28 | 40 | 53 | 57 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 50 | 93 | 136 | 200 | 285 | 377 | 406 | ||
19 | 28 | 40 | 53 | 57 | 7 | 13 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 139 | 203 | 281 | 373 | 402 | 53 | 96 | ||
40 | 53 | 57 | 7 | 13 | 19 | 28 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 284 | 376 | 405 | 56 | 92 | 135 | 199 | ||
57 | 7 | 13 | 19 | 28 | 40 | 53 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 401 | 52 | 95 | 138 | 202 | 287 | 372 | ||
13 | 19 | 28 | 40 | 53 | 57 | 7 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 98 | 134 | 198 | 283 | 375 | 404 | 55 | ||
28 | 40 | 53 | 57 | 7 | 13 | 19 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 201 | 286 | 378 | 400 | 51 | 94 | 137 | ||
53 | 57 | 7 | 13 | 19 | 28 | 40 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 374 | 403 | 54 | 97 | 140 | 197 | 282 | ||
8 | 14 | 20 | 27 | 39 | 51 | 58 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 57 | 100 | 143 | 193 | 278 | 363 | 413 | ||
20 | 27 | 39 | 51 | 58 | 8 | 14 | 5 | 6 | 0 | 1 | 2 | 3 | 4 | 146 | 196 | 274 | 359 | 409 | 60 | 103 | ||
39 | 51 | 58 | 8 | 14 | 20 | 27 | 3 | 4 | 5 | 6 | 0 | 1 | 2 | 277 | 362 | 412 | 63 | 99 | 142 | 192 | ||
58 | 8 | 14 | 20 | 27 | 39 | 51 | 1 | 2 | 3 | 4 | 5 | 6 | 0 | 408 | 59 | 102 | 145 | 195 | 280 | 358 | ||
14 | 20 | 27 | 39 | 51 | 58 | 8 | 6 | 0 | 1 | 2 | 3 | 4 | 5 | 105 | 141 | 191 | 276 | 361 | 411 | 62 | ||
27 | 39 | 51 | 58 | 8 | 14 | 20 | 4 | 5 | 6 | 0 | 1 | 2 | 3 | 194 | 279 | 364 | 407 | 58 | 101 | 144 | ||
51 | 58 | 8 | 14 | 20 | 27 | 39 | 2 | 3 | 4 | 5 | 6 | 0 | 1 | 360 | 410 | 61 | 104 | 147 | 190 | 275 |
Voeg de 9 panmagische 7x7 vierkanten op volgorde samen.
21x21 magisch vierkant opgebouwd uit 9 evenredige panmagische 7x7 vierkanten
1 | 107 | 150 | 249 | 271 | 328 | 441 | 8 | 114 | 157 | 242 | 264 | 335 | 427 | 15 | 121 | 164 | 235 | 257 | 321 | 434 |
153 | 252 | 267 | 324 | 437 | 4 | 110 | 160 | 245 | 260 | 331 | 423 | 11 | 117 | 167 | 238 | 253 | 317 | 430 | 18 | 124 |
270 | 327 | 440 | 7 | 106 | 149 | 248 | 263 | 334 | 426 | 14 | 113 | 156 | 241 | 256 | 320 | 433 | 21 | 120 | 163 | 234 |
436 | 3 | 109 | 152 | 251 | 273 | 323 | 422 | 10 | 116 | 159 | 244 | 266 | 330 | 429 | 17 | 123 | 166 | 237 | 259 | 316 |
112 | 148 | 247 | 269 | 326 | 439 | 6 | 119 | 155 | 240 | 262 | 333 | 425 | 13 | 126 | 162 | 233 | 255 | 319 | 432 | 20 |
250 | 272 | 329 | 435 | 2 | 108 | 151 | 243 | 265 | 336 | 421 | 9 | 115 | 158 | 236 | 258 | 322 | 428 | 16 | 122 | 165 |
325 | 438 | 5 | 111 | 154 | 246 | 268 | 332 | 424 | 12 | 118 | 161 | 239 | 261 | 318 | 431 | 19 | 125 | 168 | 232 | 254 |
22 | 65 | 171 | 228 | 313 | 349 | 399 | 29 | 72 | 178 | 221 | 306 | 356 | 385 | 36 | 79 | 185 | 214 | 299 | 342 | 392 |
174 | 231 | 309 | 345 | 395 | 25 | 68 | 181 | 224 | 302 | 352 | 381 | 32 | 75 | 188 | 217 | 295 | 338 | 388 | 39 | 82 |
312 | 348 | 398 | 28 | 64 | 170 | 227 | 305 | 355 | 384 | 35 | 71 | 177 | 220 | 298 | 341 | 391 | 42 | 78 | 184 | 213 |
394 | 24 | 67 | 173 | 230 | 315 | 344 | 380 | 31 | 74 | 180 | 223 | 308 | 351 | 387 | 38 | 81 | 187 | 216 | 301 | 337 |
70 | 169 | 226 | 311 | 347 | 397 | 27 | 77 | 176 | 219 | 304 | 354 | 383 | 34 | 84 | 183 | 212 | 297 | 340 | 390 | 41 |
229 | 314 | 350 | 393 | 23 | 66 | 172 | 222 | 307 | 357 | 379 | 30 | 73 | 179 | 215 | 300 | 343 | 386 | 37 | 80 | 186 |
346 | 396 | 26 | 69 | 175 | 225 | 310 | 353 | 382 | 33 | 76 | 182 | 218 | 303 | 339 | 389 | 40 | 83 | 189 | 211 | 296 |
43 | 86 | 129 | 207 | 292 | 370 | 420 | 50 | 93 | 136 | 200 | 285 | 377 | 406 | 57 | 100 | 143 | 193 | 278 | 363 | 413 |
132 | 210 | 288 | 366 | 416 | 46 | 89 | 139 | 203 | 281 | 373 | 402 | 53 | 96 | 146 | 196 | 274 | 359 | 409 | 60 | 103 |
291 | 369 | 419 | 49 | 85 | 128 | 206 | 284 | 376 | 405 | 56 | 92 | 135 | 199 | 277 | 362 | 412 | 63 | 99 | 142 | 192 |
415 | 45 | 88 | 131 | 209 | 294 | 365 | 401 | 52 | 95 | 138 | 202 | 287 | 372 | 408 | 59 | 102 | 145 | 195 | 280 | 358 |
91 | 127 | 205 | 290 | 368 | 418 | 48 | 98 | 134 | 198 | 283 | 375 | 404 | 55 | 105 | 141 | 191 | 276 | 361 | 411 | 62 |
208 | 293 | 371 | 414 | 44 | 87 | 130 | 201 | 286 | 378 | 400 | 51 | 94 | 137 | 194 | 279 | 364 | 407 | 58 | 101 | 144 |
367 | 417 | 47 | 90 | 133 | 204 | 289 | 374 | 403 | 54 | 97 | 140 | 197 | 282 | 360 | 410 | 61 | 104 | 147 | 190 | 275 |
Het 21x21 magisch vierkant is panmagisch, 7x7 compact en kloppend voor elke 1/3 rij, 1/3 kolom en 1/3 diagonaal.
Zie methode samengesteld, proportioneel (1) op deze website uitgewerkt voor
8x8, 9x9, 12x12a, 12x12b, 15x15a, 15x15b, 16x16a, 16x16b, 18x18, 20x20a, 20x20b, 21x21a, 21x21b, 24x24a, 24x24b, 24x24c, 27x27a, 27x27b, 28x28a, 28x28b, 30x30a, 30x30b, 32x32a, 32x32b, 32x32c