Voor uitleg over de Medjig methode, zie het 6x6 magisch vierkant.
Als je de '2x2 opgeblazen' versie van een 12x12 meest perfect magisch vierkant als eerste patroon en een strak Medjig patroon als tweede patroon neemt, dan kun je een panmagisch 24x24 vierkant maken.
Neem een getal uit een vakje vanuit het eerste patroon en tel daarbij 144 x getal uit hetzelfde vakje vanuit het tweede patroon bij op.
+ 1x getal
1 | 1 | 24 | 24 | 133 | 133 | 132 | 132 | 49 | 49 | 72 | 72 | 85 | 85 | 84 | 84 | 97 | 97 | 120 | 120 | 37 | 37 | 36 | 36 |
1 | 1 | 24 | 24 | 133 | 133 | 132 | 132 | 49 | 49 | 72 | 72 | 85 | 85 | 84 | 84 | 97 | 97 | 120 | 120 | 37 | 37 | 36 | 36 |
143 | 143 | 122 | 122 | 11 | 11 | 14 | 14 | 95 | 95 | 74 | 74 | 59 | 59 | 62 | 62 | 47 | 47 | 26 | 26 | 107 | 107 | 110 | 110 |
143 | 143 | 122 | 122 | 11 | 11 | 14 | 14 | 95 | 95 | 74 | 74 | 59 | 59 | 62 | 62 | 47 | 47 | 26 | 26 | 107 | 107 | 110 | 110 |
12 | 12 | 13 | 13 | 144 | 144 | 121 | 121 | 60 | 60 | 61 | 61 | 96 | 96 | 73 | 73 | 108 | 108 | 109 | 109 | 48 | 48 | 25 | 25 |
12 | 12 | 13 | 13 | 144 | 144 | 121 | 121 | 60 | 60 | 61 | 61 | 96 | 96 | 73 | 73 | 108 | 108 | 109 | 109 | 48 | 48 | 25 | 25 |
134 | 134 | 131 | 131 | 2 | 2 | 23 | 23 | 86 | 86 | 83 | 83 | 50 | 50 | 71 | 71 | 38 | 38 | 35 | 35 | 98 | 98 | 119 | 119 |
134 | 134 | 131 | 131 | 2 | 2 | 23 | 23 | 86 | 86 | 83 | 83 | 50 | 50 | 71 | 71 | 38 | 38 | 35 | 35 | 98 | 98 | 119 | 119 |
5 | 5 | 20 | 20 | 137 | 137 | 128 | 128 | 53 | 53 | 68 | 68 | 89 | 89 | 80 | 80 | 101 | 101 | 116 | 116 | 41 | 41 | 32 | 32 |
5 | 5 | 20 | 20 | 137 | 137 | 128 | 128 | 53 | 53 | 68 | 68 | 89 | 89 | 80 | 80 | 101 | 101 | 116 | 116 | 41 | 41 | 32 | 32 |
139 | 139 | 126 | 126 | 7 | 7 | 18 | 18 | 91 | 91 | 78 | 78 | 55 | 55 | 66 | 66 | 43 | 43 | 30 | 30 | 103 | 103 | 114 | 114 |
139 | 139 | 126 | 126 | 7 | 7 | 18 | 18 | 91 | 91 | 78 | 78 | 55 | 55 | 66 | 66 | 43 | 43 | 30 | 30 | 103 | 103 | 114 | 114 |
8 | 8 | 17 | 17 | 140 | 140 | 125 | 125 | 56 | 56 | 65 | 65 | 92 | 92 | 77 | 77 | 104 | 104 | 113 | 113 | 44 | 44 | 29 | 29 |
8 | 8 | 17 | 17 | 140 | 140 | 125 | 125 | 56 | 56 | 65 | 65 | 92 | 92 | 77 | 77 | 104 | 104 | 113 | 113 | 44 | 44 | 29 | 29 |
138 | 138 | 127 | 127 | 6 | 6 | 19 | 19 | 90 | 90 | 79 | 79 | 54 | 54 | 67 | 67 | 42 | 42 | 31 | 31 | 102 | 102 | 115 | 115 |
138 | 138 | 127 | 127 | 6 | 6 | 19 | 19 | 90 | 90 | 79 | 79 | 54 | 54 | 67 | 67 | 42 | 42 | 31 | 31 | 102 | 102 | 115 | 115 |
9 | 9 | 16 | 16 | 141 | 141 | 124 | 124 | 57 | 57 | 64 | 64 | 93 | 93 | 76 | 76 | 105 | 105 | 112 | 112 | 45 | 45 | 28 | 28 |
9 | 9 | 16 | 16 | 141 | 141 | 124 | 124 | 57 | 57 | 64 | 64 | 93 | 93 | 76 | 76 | 105 | 105 | 112 | 112 | 45 | 45 | 28 | 28 |
135 | 135 | 130 | 130 | 3 | 3 | 22 | 22 | 87 | 87 | 82 | 82 | 51 | 51 | 70 | 70 | 39 | 39 | 34 | 34 | 99 | 99 | 118 | 118 |
135 | 135 | 130 | 130 | 3 | 3 | 22 | 22 | 87 | 87 | 82 | 82 | 51 | 51 | 70 | 70 | 39 | 39 | 34 | 34 | 99 | 99 | 118 | 118 |
4 | 4 | 21 | 21 | 136 | 136 | 129 | 129 | 52 | 52 | 69 | 69 | 88 | 88 | 81 | 81 | 100 | 100 | 117 | 117 | 40 | 40 | 33 | 33 |
4 | 4 | 21 | 21 | 136 | 136 | 129 | 129 | 52 | 52 | 69 | 69 | 88 | 88 | 81 | 81 | 100 | 100 | 117 | 117 | 40 | 40 | 33 | 33 |
142 | 142 | 123 | 123 | 10 | 10 | 15 | 15 | 94 | 94 | 75 | 75 | 58 | 58 | 63 | 63 | 46 | 46 | 27 | 27 | 106 | 106 | 111 | 111 |
142 | 142 | 123 | 123 | 10 | 10 | 15 | 15 | 94 | 94 | 75 | 75 | 58 | 58 | 63 | 63 | 46 | 46 | 27 | 27 | 106 | 106 | 111 | 111 |
+ 144x getal
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
= 24x24 panmagisch vierkant
1 | 433 | 24 | 456 | 133 | 565 | 132 | 564 | 49 | 481 | 72 | 504 | 85 | 517 | 84 | 516 | 97 | 529 | 120 | 552 | 37 | 469 | 36 | 468 |
145 | 289 | 168 | 312 | 277 | 421 | 276 | 420 | 193 | 337 | 216 | 360 | 229 | 373 | 228 | 372 | 241 | 385 | 264 | 408 | 181 | 325 | 180 | 324 |
575 | 143 | 554 | 122 | 443 | 11 | 446 | 14 | 527 | 95 | 506 | 74 | 491 | 59 | 494 | 62 | 479 | 47 | 458 | 26 | 539 | 107 | 542 | 110 |
431 | 287 | 410 | 266 | 299 | 155 | 302 | 158 | 383 | 239 | 362 | 218 | 347 | 203 | 350 | 206 | 335 | 191 | 314 | 170 | 395 | 251 | 398 | 254 |
12 | 444 | 13 | 445 | 144 | 576 | 121 | 553 | 60 | 492 | 61 | 493 | 96 | 528 | 73 | 505 | 108 | 540 | 109 | 541 | 48 | 480 | 25 | 457 |
156 | 300 | 157 | 301 | 288 | 432 | 265 | 409 | 204 | 348 | 205 | 349 | 240 | 384 | 217 | 361 | 252 | 396 | 253 | 397 | 192 | 336 | 169 | 313 |
566 | 134 | 563 | 131 | 434 | 2 | 455 | 23 | 518 | 86 | 515 | 83 | 482 | 50 | 503 | 71 | 470 | 38 | 467 | 35 | 530 | 98 | 551 | 119 |
422 | 278 | 419 | 275 | 290 | 146 | 311 | 167 | 374 | 230 | 371 | 227 | 338 | 194 | 359 | 215 | 326 | 182 | 323 | 179 | 386 | 242 | 407 | 263 |
5 | 437 | 20 | 452 | 137 | 569 | 128 | 560 | 53 | 485 | 68 | 500 | 89 | 521 | 80 | 512 | 101 | 533 | 116 | 548 | 41 | 473 | 32 | 464 |
149 | 293 | 164 | 308 | 281 | 425 | 272 | 416 | 197 | 341 | 212 | 356 | 233 | 377 | 224 | 368 | 245 | 389 | 260 | 404 | 185 | 329 | 176 | 320 |
571 | 139 | 558 | 126 | 439 | 7 | 450 | 18 | 523 | 91 | 510 | 78 | 487 | 55 | 498 | 66 | 475 | 43 | 462 | 30 | 535 | 103 | 546 | 114 |
427 | 283 | 414 | 270 | 295 | 151 | 306 | 162 | 379 | 235 | 366 | 222 | 343 | 199 | 354 | 210 | 331 | 187 | 318 | 174 | 391 | 247 | 402 | 258 |
8 | 440 | 17 | 449 | 140 | 572 | 125 | 557 | 56 | 488 | 65 | 497 | 92 | 524 | 77 | 509 | 104 | 536 | 113 | 545 | 44 | 476 | 29 | 461 |
152 | 296 | 161 | 305 | 284 | 428 | 269 | 413 | 200 | 344 | 209 | 353 | 236 | 380 | 221 | 365 | 248 | 392 | 257 | 401 | 188 | 332 | 173 | 317 |
570 | 138 | 559 | 127 | 438 | 6 | 451 | 19 | 522 | 90 | 511 | 79 | 486 | 54 | 499 | 67 | 474 | 42 | 463 | 31 | 534 | 102 | 547 | 115 |
426 | 282 | 415 | 271 | 294 | 150 | 307 | 163 | 378 | 234 | 367 | 223 | 342 | 198 | 355 | 211 | 330 | 186 | 319 | 175 | 390 | 246 | 403 | 259 |
9 | 441 | 16 | 448 | 141 | 573 | 124 | 556 | 57 | 489 | 64 | 496 | 93 | 525 | 76 | 508 | 105 | 537 | 112 | 544 | 45 | 477 | 28 | 460 |
153 | 297 | 160 | 304 | 285 | 429 | 268 | 412 | 201 | 345 | 208 | 352 | 237 | 381 | 220 | 364 | 249 | 393 | 256 | 400 | 189 | 333 | 172 | 316 |
567 | 135 | 562 | 130 | 435 | 3 | 454 | 22 | 519 | 87 | 514 | 82 | 483 | 51 | 502 | 70 | 471 | 39 | 466 | 34 | 531 | 99 | 550 | 118 |
423 | 279 | 418 | 274 | 291 | 147 | 310 | 166 | 375 | 231 | 370 | 226 | 339 | 195 | 358 | 214 | 327 | 183 | 322 | 178 | 387 | 243 | 406 | 262 |
4 | 436 | 21 | 453 | 136 | 568 | 129 | 561 | 52 | 484 | 69 | 501 | 88 | 520 | 81 | 513 | 100 | 532 | 117 | 549 | 40 | 472 | 33 | 465 |
148 | 292 | 165 | 309 | 280 | 424 | 273 | 417 | 196 | 340 | 213 | 357 | 232 | 376 | 225 | 369 | 244 | 388 | 261 | 405 | 184 | 328 | 177 | 321 |
574 | 142 | 555 | 123 | 442 | 10 | 447 | 15 | 526 | 94 | 507 | 75 | 490 | 58 | 495 | 63 | 478 | 46 | 459 | 27 | 538 | 106 | 543 | 111 |
430 | 286 | 411 | 267 | 298 | 154 | 303 | 159 | 382 | 238 | 363 | 219 | 346 | 202 | 351 | 207 | 334 | 190 | 315 | 171 | 394 | 250 | 399 | 255 |
N.B.: Elke 1/3 rij/kolom/diagonaal levert 1/3 van de magische som (1/3 x 6924 = 2308) op en elk willekeurig gekozen 4x4 vierkant binnen het 24x24 vierkant levert 2/3 van de magische som (2/3 x 6924 = 4616) op.
Zie op deze website de Medjig methode uitgewerkt voor 6x6, 8x8, 10x10, 12x12, 14x14, 16x16, 18x18, 20x20, 22x22, 24x24, 26x26, 28x28, 30x30 en 32x32