Kies uit onderstaande patronen vier patronen een oneven V, een even V, een oneven H en een even H (n.b.: 1, 3, 5, 7, 9 en 11 is oneven en 2, 4, 6, 8, 10 en 12 is even).
V1 |
V2 |
H1 |
H2 |
||||||||||||||||||||||||||||||||||||||||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
||||||||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
||||||||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
||||||||
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
||||||||
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
||||||||
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
||||||||
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
||||||||
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
||||||||
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
||||||||
V3 |
V4 |
H3 |
H4 |
||||||||||||||||||||||||||||||||||||||||
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
||||||||
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
||||||||
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
||||||||
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
||||||||
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
||||||||
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
||||||||
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
||||||||
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
||||||||
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
||||||||
V5 |
V6 |
H5 |
H6 |
||||||||||||||||||||||||||||||||||||||||
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
||||||||
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
||||||||
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
||||||||
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
||||||||
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
||||||||
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
||||||||
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
||||||||
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
||||||||
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
||||||||
V7 |
V8 |
H7 |
H8 |
||||||||||||||||||||||||||||||||||||||||
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
||||||||
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
||||||||
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
||||||||
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
||||||||
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
||||||||
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
||||||||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
||||||||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
||||||||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
||||||||
V9 |
V10 |
H9 |
H10 |
||||||||||||||||||||||||||||||||||||||||
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
||||||||
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
||||||||
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
||||||||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
||||||||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
||||||||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
||||||||
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
||||||||
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
||||||||
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
||||||||
V11 |
V12 |
H11 |
H12 |
||||||||||||||||||||||||||||||||||||||||
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
||||||||
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
||||||||
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
||||||||
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
||||||||
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
||||||||
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
||||||||
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
||||||||
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
||||||||
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
Zet de gekozen 4 patronen in willekeurige volgorde en neem 1x getal uit eerste patroon plus 3x getal uit tweede patroon plus 9x getal uit derde patroon plus 27x getal uit vierde patroon en tel
daarbij nog eens 1 op.
We kiezen bijvoorbeeld H2-V4-V1-H3.
Neem 1x getal vanuit patroon H2 |
||||||||
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
+3x getal vanuit patroon V4 |
||||||||
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
2 |
1 |
0 |
+ 9x getal vanuit patroon V1 |
||||||||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
+ 27x getal vanuit patroon H3 +1 |
||||||||
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
0 |
2 |
2 |
2 |
|
||||||||
= panmagisch 9x9 vierkant |
||||||||
1 |
16 |
22 |
57 |
72 |
78 |
29 |
44 |
50 |
56 |
71 |
77 |
28 |
43 |
49 |
3 |
18 |
24 |
30 |
45 |
51 |
2 |
17 |
23 |
55 |
70 |
76 |
13 |
19 |
7 |
69 |
75 |
63 |
41 |
47 |
35 |
68 |
74 |
62 |
40 |
46 |
34 |
15 |
21 |
9 |
42 |
48 |
36 |
14 |
20 |
8 |
67 |
73 |
61 |
25 |
4 |
10 |
81 |
60 |
66 |
53 |
32 |
38 |
80 |
59 |
65 |
52 |
31 |
37 |
27 |
6 |
12 |
54 |
33 |
39 |
26 |
5 |
11 |
79 |
58 |
64 |
Dit panmagisch 9x9 vierkant is ook 3x3 compact.
Deze methode geeft 6x6x6x6 (keuze even en oneven V en H) x 4x3x2x1 (volgorde patronen) is 31.104 oplossingsmogelijkheden. Als je het resultaat verschuift over het 2x2 tapijt van het
panmagische 9x9 vierkant, dan krijg je nog veel meer oplossingsmogelijkheden.