See for detailed explanation, webpage pan 4x4 in 6x6
Take a most perfect 8x8 magic square and add 18 to all numbers to get the 8x8 inlay.
Use the table below to construct the 10x10 border.
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
200 |
1 |
|
|
|
|
6 |
|
|
|
|
11 |
|
|
14 |
|
|
|
18 |
50 |
|
2 |
|
|
|
|
7 |
|
|
|
|
12 |
|
14 |
15 |
|
|
|
50 |
|
|
3 |
|
5 |
|
|
|
|
10 |
|
|
|
|
15 |
|
17 |
|
50 |
|
|
|
4 |
|
|
|
8 |
9 |
|
|
|
13 |
|
|
16 |
|
|
50 |
The final result is:
Most perfect 8x8 in 10x10 magic square
14 |
2 |
7 |
12 |
97 |
93 |
92 |
88 |
85 |
15 |
98 |
19 |
73 |
32 |
78 |
20 |
74 |
31 |
77 |
3 |
96 |
34 |
76 |
21 |
71 |
33 |
75 |
22 |
72 |
5 |
91 |
69 |
23 |
82 |
28 |
70 |
24 |
81 |
27 |
10 |
84 |
80 |
30 |
67 |
25 |
79 |
29 |
68 |
26 |
17 |
1 |
35 |
57 |
48 |
62 |
36 |
58 |
47 |
61 |
100 |
6 |
50 |
60 |
37 |
55 |
49 |
59 |
38 |
56 |
95 |
11 |
53 |
39 |
66 |
44 |
54 |
40 |
65 |
43 |
90 |
18 |
64 |
46 |
51 |
41 |
63 |
45 |
52 |
42 |
83 |
86 |
99 |
94 |
89 |
4 |
8 |
9 |
13 |
16 |
87 |
Use this method to construct inlaid magic squares of even order. See 6x6, 8x8, 10x10, 12x12, 14x14, 16x16, 18x18, 20x20, 22x22, 24x24, 26x26, 28x28, 30x30 & 32x32