How to construct a 12x12 composite magic square?
See in "Scripta Mathematica", 1938, Royal Vale Heath how to construct a 12x12 composite magic square:
1x number from grid with 3x3 'blown up' panmagic 4x4 square
1 |
1 |
1 |
8 |
8 |
8 |
13 |
13 |
13 |
12 |
12 |
12 |
1 |
1 |
1 |
8 |
8 |
8 |
13 |
13 |
13 |
12 |
12 |
12 |
1 |
1 |
1 |
8 |
8 |
8 |
13 |
13 |
13 |
12 |
12 |
12 |
14 |
14 |
14 |
11 |
11 |
11 |
2 |
2 |
2 |
7 |
7 |
7 |
14 |
14 |
14 |
11 |
11 |
11 |
2 |
2 |
2 |
7 |
7 |
7 |
14 |
14 |
14 |
11 |
11 |
11 |
2 |
2 |
2 |
7 |
7 |
7 |
4 |
4 |
4 |
5 |
5 |
5 |
16 |
16 |
16 |
9 |
9 |
9 |
4 |
4 |
4 |
5 |
5 |
5 |
16 |
16 |
16 |
9 |
9 |
9 |
4 |
4 |
4 |
5 |
5 |
5 |
16 |
16 |
16 |
9 |
9 |
9 |
15 |
15 |
15 |
10 |
10 |
10 |
3 |
3 |
3 |
6 |
6 |
6 |
15 |
15 |
15 |
10 |
10 |
10 |
3 |
3 |
3 |
6 |
6 |
6 |
15 |
15 |
15 |
10 |
10 |
10 |
3 |
3 |
3 |
6 |
6 |
6 |
+ [number minus 1] x 16 from grid with 3x3 (and upside down) magic square
6 |
1 |
8 |
4 |
9 |
2 |
6 |
1 |
8 |
4 |
9 |
2 |
7 |
5 |
3 |
3 |
5 |
7 |
7 |
5 |
3 |
3 |
5 |
7 |
2 |
9 |
4 |
8 |
1 |
6 |
2 |
9 |
4 |
8 |
1 |
6 |
4 |
9 |
2 |
6 |
1 |
8 |
4 |
9 |
2 |
6 |
1 |
8 |
3 |
5 |
7 |
7 |
5 |
3 |
3 |
5 |
7 |
7 |
5 |
3 |
8 |
1 |
6 |
2 |
9 |
4 |
8 |
1 |
6 |
2 |
9 |
4 |
4 |
9 |
2 |
6 |
1 |
8 |
4 |
9 |
2 |
6 |
1 |
8 |
3 |
5 |
7 |
7 |
5 |
3 |
3 |
5 |
7 |
7 |
5 |
3 |
8 |
1 |
6 |
2 |
9 |
4 |
8 |
1 |
6 |
2 |
9 |
4 |
6 |
1 |
8 |
4 |
9 |
2 |
6 |
1 |
8 |
4 |
9 |
2 |
7 |
5 |
3 |
3 |
5 |
7 |
7 |
5 |
3 |
3 |
5 |
7 |
2 |
9 |
4 |
8 |
1 |
6 |
2 |
9 |
4 |
8 |
1 |
6 |
= panmagic 12x12 square (consisting of 16 magic 3x3 squares)
81 |
1 |
113 |
56 |
136 |
24 |
93 |
13 |
125 |
60 |
140 |
28 |
97 |
65 |
33 |
40 |
72 |
104 |
109 |
77 |
45 |
44 |
76 |
108 |
17 |
129 |
49 |
120 |
8 |
88 |
29 |
141 |
61 |
124 |
12 |
92 |
62 |
142 |
30 |
91 |
11 |
123 |
50 |
130 |
18 |
87 |
7 |
119 |
46 |
78 |
110 |
107 |
75 |
43 |
34 |
66 |
98 |
103 |
71 |
39 |
126 |
14 |
94 |
27 |
139 |
59 |
114 |
2 |
82 |
23 |
135 |
55 |
52 |
132 |
20 |
85 |
5 |
117 |
64 |
144 |
32 |
89 |
9 |
121 |
36 |
68 |
100 |
101 |
69 |
37 |
48 |
80 |
112 |
105 |
73 |
41 |
116 |
4 |
84 |
21 |
133 |
53 |
128 |
16 |
96 |
25 |
137 |
57 |
95 |
15 |
127 |
58 |
138 |
26 |
83 |
3 |
115 |
54 |
134 |
22 |
111 |
79 |
47 |
42 |
74 |
106 |
99 |
67 |
35 |
38 |
70 |
102 |
31 |
143 |
63 |
122 |
10 |
90 |
19 |
131 |
51 |
118 |
6 |
86 |
What are the special magic features of this 12x12 magic square?
(1st) The 12x12 magic square is panmagic and consists of 16 (not proportional) magic 3x3 squares;
(2nd) 9 (proportional) panmagic 4x4 squares are hidden in the 12x12 magic square; see below.
12x12 magic square --> 9x panmagic 4x4 square
81 |
1 |
113 |
56 |
136 |
24 |
93 |
13 |
125 |
60 |
140 |
28 |
97 |
65 |
33 |
40 |
72 |
104 |
109 |
77 |
45 |
44 |
76 |
108 |
17 |
129 |
49 |
120 |
8 |
88 |
29 |
141 |
61 |
124 |
12 |
92 |
62 |
142 |
30 |
91 |
11 |
123 |
50 |
130 |
18 |
87 |
7 |
119 |
46 |
78 |
110 |
107 |
75 |
43 |
34 |
66 |
98 |
103 |
71 |
39 |
126 |
14 |
94 |
27 |
139 |
59 |
114 |
2 |
82 |
23 |
135 |
55 |
52 |
132 |
20 |
85 |
5 |
117 |
64 |
144 |
32 |
89 |
9 |
121 |
36 |
68 |
100 |
101 |
69 |
37 |
48 |
80 |
112 |
105 |
73 |
41 |
116 |
4 |
84 |
21 |
133 |
53 |
128 |
16 |
96 |
25 |
137 |
57 |
95 |
15 |
127 |
58 |
138 |
26 |
83 |
3 |
115 |
54 |
134 |
22 |
111 |
79 |
47 |
42 |
74 |
106 |
99 |
67 |
35 |
38 |
70 |
102 |
31 |
143 |
63 |
122 |
10 |
90 |
19 |
131 |
51 |
118 |
6 |
86 |
For example, combine all yellow marked numbers.
= One of the 9 hidden panmagic 4x4 squares:
290 |
290 |
290 |
290 |
|||||
290 |
290 |
|||||||
290 |
81 |
56 |
93 |
60 |
||||
290 |
62 |
91 |
50 |
87 |
290 |
290 |
||
290 |
52 |
85 |
64 |
89 |
290 |
290 |
||
290 |
95 |
58 |
83 |
54 |
290 |
290 |
(3th) 27 (proportional) panmagic 8x8 squares are hidden in the 12x12 magic square. Combine 4x number from the same cells of each 3x3 sub-square.
01 |
02 |
03 |
||||||||||
04 |
05 |
06 |
||||||||||
07 |
08 |
09 |
||||||||||
|
10 |
11 |
12 |
|||||||||
13 |
14 |
15 |
||||||||||
16 |
17 |
18 |
||||||||||
19 |
20 |
21 |
||||||||||
22 |
23 |
24 |
||||||||||
25 |
26 |
27 |
||||||||||
For example, choose 12 and you get the following 8x8 panmagic square.
= One of the 27 panmagic 8x8 squares:
580 |
580 |
580 |
580 |
580 |
580 |
580 |
580 |
|||||
580 |
580 |
|||||||||||
580 |
81 |
33 |
56 |
104 |
93 |
45 |
60 |
108 |
||||
580 |
17 |
49 |
120 |
88 |
29 |
61 |
124 |
92 |
580 |
580 |
||
580 |
62 |
110 |
91 |
43 |
50 |
98 |
87 |
39 |
580 |
580 |
||
580 |
126 |
94 |
27 |
59 |
114 |
82 |
23 |
55 |
580 |
580 |
||
580 |
52 |
100 |
85 |
37 |
64 |
112 |
89 |
41 |
580 |
580 |
||
580 |
116 |
84 |
21 |
53 |
128 |
96 |
25 |
57 |
580 |
580 |
||
580 |
95 |
47 |
58 |
106 |
83 |
35 |
54 |
102 |
580 |
580 |
||
580 |
31 |
63 |
122 |
90 |
19 |
51 |
118 |
86 |
580 |
580 |
Use this method to construct magic squares which are a multiple of 4 from 12x12 to infinite. See
12x12, 16x16, 20x20, 24x24a, 24x24b, 28x28, 32x32a and 32x32b