I was inspired by the inlaid squares on the website of Harvey Heinz: www.magic-squares.net/magicsquare.htm#Orders 3, 5, 7, 9 Inlaid and the inlaid squares of John Hendricks: www.magic-squares.net/hendricks.htm
First we construct a 12x12 inlay, which consist of four pan-4x4 in 6x6 magic squares in five steps:
[1] To get the four 4x4 panmagic inlay squares we take a 8x8 most perfect (Franklin pan)magic square, add 40 to each number and split up the 8x8 square in four 4x4 (inlay) squares.
Most perfect 8x8 square + 40 = four 4x4 inlay squares
1 |
54 |
12 |
63 |
3 |
56 |
10 |
61 |
41 |
94 |
52 |
103 |
43 |
96 |
50 |
101 |
||
16 |
59 |
5 |
50 |
14 |
57 |
7 |
52 |
56 |
99 |
45 |
90 |
54 |
97 |
47 |
92 |
||
53 |
2 |
64 |
11 |
55 |
4 |
62 |
9 |
93 |
42 |
104 |
51 |
95 |
44 |
102 |
49 |
||
60 |
15 |
49 |
6 |
58 |
13 |
51 |
8 |
100 |
55 |
89 |
46 |
98 |
53 |
91 |
48 |
||
17 |
38 |
28 |
47 |
19 |
40 |
26 |
45 |
57 |
78 |
68 |
87 |
59 |
80 |
66 |
85 |
||
32 |
43 |
21 |
34 |
30 |
41 |
23 |
36 |
72 |
83 |
61 |
74 |
70 |
81 |
63 |
76 |
||
37 |
18 |
48 |
27 |
39 |
20 |
46 |
25 |
77 |
58 |
88 |
67 |
79 |
60 |
86 |
65 |
||
44 |
31 |
33 |
22 |
42 |
29 |
35 |
24 |
84 |
71 |
73 |
62 |
82 |
69 |
75 |
64 |
[2] To construct the four borders we need (4 x 20 =) 80 numbers. Take the numbers 1 up to 40 and 105 up to 144. Translate the numbers 105 up to 144 into -/- 1 up to -/- 40.
[3] Put in each side of the border 3 positive and 3 negative numbers and take care that the sum of the 6 numbers is exactly 0. In the four x four corners you need 16 numbers extra = 8 positive and 8 negative numbers double. The average number is ([the lowest number + the highest number] divided by 2: [1+40]/2 =) 20,5. Take as sum of the 8 double numbers (8 x 20,5 = ) 164. Take as sum of 3 numbers (3 x 20,5 =) 61,5 = 61 (8x) or 62 (8x). I puzzeled and got the following table:
+ |
15 |
20 |
26 |
61 |
16 |
21 |
25 |
62 |
17 |
22 |
23 |
62 |
18 |
19 |
24 |
61 |
164 |
|||||
+ |
7 |
28 |
26 |
61 |
5 |
32 |
25 |
62 |
8 |
31 |
23 |
62 |
1 |
36 |
24 |
61 |
||||||
-/- |
15 |
9 |
37 |
61 |
16 |
6 |
40 |
62 |
17 |
10 |
35 |
62 |
18 |
4 |
39 |
61 |
||||||
-/- |
13 |
14 |
34 |
61 |
3 |
29 |
30 |
62 |
2 |
27 |
33 |
62 |
11 |
12 |
38 |
61 |
[4] Use the table to construct the 4 borders and translate the negative numbers into -/- 1 up to -/- 40 into 105 up to 144).
15 |
20 |
-13 |
-14 |
-34 |
26 |
16 |
21 |
-3 |
-29 |
-30 |
25 |
17 |
22 |
-2 |
-27 |
-33 |
23 |
18 |
19 |
-11 |
-12 |
-38 |
24 |
|||
28 |
32 |
31 |
36 |
|||||||||||||||||||||||
7 |
5 |
8 |
1 |
|||||||||||||||||||||||
-37 |
-40 |
-35 |
-39 |
|||||||||||||||||||||||
-9 |
-6 |
-10 |
-4 |
|||||||||||||||||||||||
-15 |
-16 |
-17 |
-18 |
|||||||||||||||||||||||
15 |
20 |
-13 |
-14 |
-34 |
26 |
16 |
21 |
-3 |
-29 |
-30 |
25 |
17 |
22 |
-2 |
-27 |
-33 |
23 |
18 |
19 |
-11 |
-12 |
-38 |
24 |
|||
-28 |
28 |
-32 |
32 |
-31 |
31 |
-36 |
36 |
|||||||||||||||||||
-7 |
7 |
-5 |
5 |
-8 |
8 |
-1 |
1 |
|||||||||||||||||||
37 |
-37 |
40 |
-40 |
35 |
-35 |
39 |
-39 |
|||||||||||||||||||
9 |
-9 |
6 |
-6 |
10 |
-10 |
4 |
-4 |
|||||||||||||||||||
-26 |
-20 |
13 |
14 |
34 |
-15 |
-25 |
-21 |
3 |
29 |
30 |
-16 |
-23 |
-22 |
2 |
27 |
33 |
-17 |
-24 |
-19 |
11 |
12 |
38 |
-18 |
|||
15 |
20 |
132 |
131 |
111 |
26 |
16 |
21 |
142 |
116 |
115 |
25 |
17 |
22 |
143 |
118 |
112 |
23 |
18 |
19 |
134 |
133 |
107 |
24 |
|||
117 |
28 |
113 |
32 |
114 |
31 |
109 |
36 |
|||||||||||||||||||
138 |
7 |
140 |
5 |
137 |
8 |
144 |
1 |
|||||||||||||||||||
37 |
108 |
40 |
105 |
35 |
110 |
39 |
106 |
|||||||||||||||||||
9 |
136 |
6 |
139 |
10 |
135 |
4 |
141 |
|||||||||||||||||||
119 |
125 |
13 |
14 |
34 |
130 |
120 |
124 |
3 |
29 |
30 |
129 |
122 |
123 |
2 |
27 |
33 |
128 |
121 |
126 |
11 |
12 |
38 |
127 |
[5] Combine the borders and the 4x4 inlay squares.
12x12 magic square = four 6x6 magic squares with pan-4x4 inlay
15 |
20 |
132 |
131 |
111 |
26 |
16 |
21 |
142 |
116 |
115 |
25 |
117 |
41 |
94 |
52 |
103 |
28 |
113 |
43 |
96 |
50 |
101 |
32 |
138 |
56 |
99 |
45 |
90 |
7 |
140 |
54 |
97 |
47 |
92 |
5 |
37 |
93 |
42 |
104 |
51 |
108 |
40 |
95 |
44 |
102 |
49 |
105 |
9 |
100 |
55 |
89 |
46 |
136 |
6 |
98 |
53 |
91 |
48 |
139 |
119 |
125 |
13 |
14 |
34 |
130 |
120 |
124 |
3 |
29 |
30 |
129 |
17 |
22 |
143 |
118 |
112 |
23 |
18 |
19 |
134 |
133 |
107 |
24 |
114 |
57 |
78 |
68 |
87 |
31 |
109 |
59 |
80 |
66 |
85 |
36 |
137 |
72 |
83 |
61 |
74 |
8 |
144 |
70 |
81 |
63 |
76 |
1 |
35 |
77 |
58 |
88 |
67 |
110 |
39 |
79 |
60 |
86 |
65 |
106 |
10 |
84 |
71 |
73 |
62 |
135 |
4 |
82 |
69 |
75 |
64 |
141 |
122 |
123 |
2 |
27 |
33 |
128 |
121 |
126 |
11 |
12 |
38 |
127 |
The magic sum of each 4x4 panmagic inlay square is 290.The magic sum of each 6x6 magic square is 435. The magic sum of the 12x12 magic square is 870.
Because the 12x12 magic square consists of four proportional 6x6 magic squares, each 1/2 row/column/diagonal gives 1/2 of the magic sum.
And now we construct the 14x14 inlaid square:
[1] Add 26 to each number of the 12x12 magic square;
[2] Use 52 numbers (= 1 up to 26 and 171 up to 196) to construct the 14x14 border.
The sum of the numbers 1 up to 26 is 351. Add 33 to the sum of 351 and you get 384 = 4x96. To get 33 take the
numbers 16 and 17 double. I constructed the following table:
16 |
17 |
1 |
26 |
2 |
25 |
9 |
96 |
|
16 |
4 |
24 |
5 |
22 |
6 |
19 |
96 |
|
17 |
3 |
23 |
7 |
21 |
10 |
15 |
96 |
|
8 |
11 |
12 |
13 |
14 |
18 |
20 |
96 |
Use the
table to construct the 14x14 border (the numbers 171 up to 196 have been translated into -/- 1 up to -/- 26):
16 |
1 |
26 |
2 |
25 |
9 |
-8 |
-11 |
-12 |
-13 |
-14 |
-18 |
-20 |
17 |
3 |
|||||||||||||
23 |
|||||||||||||
7 |
|||||||||||||
21 |
|||||||||||||
10 |
|||||||||||||
15 |
|||||||||||||
-4 |
|||||||||||||
-24 |
|||||||||||||
-5 |
|||||||||||||
-22 |
|||||||||||||
-6 |
|||||||||||||
-19 |
|||||||||||||
-16 |
|||||||||||||
16 |
1 |
26 |
2 |
25 |
9 |
-8 |
-11 |
-12 |
-13 |
-14 |
-18 |
-20 |
17 |
-3 |
3 |
||||||||||||
-23 |
23 |
||||||||||||
-7 |
7 |
||||||||||||
-21 |
21 |
||||||||||||
-10 |
10 |
||||||||||||
-15 |
15 |
||||||||||||
4 |
-4 |
||||||||||||
24 |
-24 |
||||||||||||
5 |
-5 |
||||||||||||
22 |
-22 |
||||||||||||
6 |
-6 |
||||||||||||
19 |
-19 |
||||||||||||
-17 |
-1 |
-26 |
-2 |
-25 |
-9 |
8 |
11 |
12 |
13 |
14 |
18 |
20 |
-16 |
16 |
1 |
26 |
2 |
25 |
9 |
189 |
186 |
185 |
184 |
183 |
179 |
177 |
17 |
194 |
3 |
||||||||||||
174 |
23 |
||||||||||||
190 |
7 |
||||||||||||
176 |
21 |
||||||||||||
187 |
10 |
||||||||||||
182 |
15 |
||||||||||||
4 |
193 |
||||||||||||
24 |
173 |
||||||||||||
5 |
192 |
||||||||||||
22 |
175 |
||||||||||||
6 |
191 |
||||||||||||
19 |
178 |
||||||||||||
180 |
196 |
171 |
195 |
172 |
188 |
8 |
11 |
12 |
13 |
14 |
18 |
20 |
181 |
Combine
the 14x14 border and the 12x12 inlay to complete the 14x14 magic inlaid square.
Magic 14x14 inlaid
square (with inlays 4x4, 6x6 and 12x12)
16 |
1 |
26 |
2 |
25 |
9 |
189 |
186 |
185 |
184 |
183 |
179 |
177 |
17 |
194 |
41 |
46 |
158 |
157 |
137 |
52 |
42 |
47 |
168 |
142 |
141 |
51 |
3 |
174 |
143 |
67 |
120 |
78 |
129 |
54 |
139 |
69 |
122 |
76 |
127 |
58 |
23 |
190 |
164 |
82 |
125 |
71 |
116 |
33 |
166 |
80 |
123 |
73 |
118 |
31 |
7 |
176 |
63 |
119 |
68 |
130 |
77 |
134 |
66 |
121 |
70 |
128 |
75 |
131 |
21 |
187 |
35 |
126 |
81 |
115 |
72 |
162 |
32 |
124 |
79 |
117 |
74 |
165 |
10 |
182 |
145 |
151 |
39 |
40 |
60 |
156 |
146 |
150 |
29 |
55 |
56 |
155 |
15 |
4 |
43 |
48 |
169 |
144 |
138 |
49 |
44 |
45 |
160 |
159 |
133 |
50 |
193 |
24 |
140 |
83 |
104 |
94 |
113 |
57 |
135 |
85 |
106 |
92 |
111 |
62 |
173 |
5 |
163 |
98 |
109 |
87 |
100 |
34 |
170 |
96 |
107 |
89 |
102 |
27 |
192 |
22 |
61 |
103 |
84 |
114 |
93 |
136 |
65 |
105 |
86 |
112 |
91 |
132 |
175 |
6 |
36 |
110 |
97 |
99 |
88 |
161 |
30 |
108 |
95 |
101 |
90 |
167 |
191 |
19 |
148 |
149 |
28 |
53 |
59 |
154 |
147 |
152 |
37 |
38 |
64 |
153 |
178 |
180 |
196 |
171 |
195 |
172 |
188 |
8 |
11 |
12 |
13 |
14 |
18 |
20 |
181 |
Who
told you that only simple 14x14 (= double odd) magic squares exist!!!