For explanation of the Medjig method, see 6x6 magic square.
The first grid is a 2x2 'blown up' pure 7x7 magic square. Construct the second grid using 49 Medjig tiles.
In a (2x2) medjig tile are all the numbers from 0 up to 3, but each
time in a different order. Take care that the sum of the numbers in each row/column/diagonal is (14 x 1,5 =) 21.
Take 1x number from first grid and add 49x number from the same cell of the second grid.
1x number from grid with 2x2 'blown up' 7x7 magic square
22 | 22 | 47 | 47 | 16 | 16 | 41 | 41 | 10 | 10 | 35 | 35 | 4 | 4 |
22 | 22 | 47 | 47 | 16 | 16 | 41 | 41 | 10 | 10 | 35 | 35 | 4 | 4 |
5 | 5 | 23 | 23 | 48 | 48 | 17 | 17 | 42 | 42 | 11 | 11 | 29 | 29 |
5 | 5 | 23 | 23 | 48 | 48 | 17 | 17 | 42 | 42 | 11 | 11 | 29 | 29 |
30 | 30 | 6 | 6 | 24 | 24 | 49 | 49 | 18 | 18 | 36 | 36 | 12 | 12 |
30 | 30 | 6 | 6 | 24 | 24 | 49 | 49 | 18 | 18 | 36 | 36 | 12 | 12 |
13 | 13 | 31 | 31 | 7 | 7 | 25 | 25 | 43 | 43 | 19 | 19 | 37 | 37 |
13 | 13 | 31 | 31 | 7 | 7 | 25 | 25 | 43 | 43 | 19 | 19 | 37 | 37 |
38 | 38 | 14 | 14 | 32 | 32 | 1 | 1 | 26 | 26 | 44 | 44 | 20 | 20 |
38 | 38 | 14 | 14 | 32 | 32 | 1 | 1 | 26 | 26 | 44 | 44 | 20 | 20 |
21 | 21 | 39 | 39 | 8 | 8 | 33 | 33 | 2 | 2 | 27 | 27 | 45 | 45 |
21 | 21 | 39 | 39 | 8 | 8 | 33 | 33 | 2 | 2 | 27 | 27 | 45 | 45 |
46 | 46 | 15 | 15 | 40 | 40 | 9 | 9 | 34 | 34 | 3 | 3 | 28 | 28 |
46 | 46 | 15 | 15 | 40 | 40 | 9 | 9 | 34 | 34 | 3 | 3 | 28 | 28 |
+ 49x number from grid with Medjig tiles
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
3 | 0 | 3 | 0 | 3 | 0 | 0 | 3 | 3 | 0 | 3 | 0 | 3 | 0 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
0 | 3 | 0 | 3 | 0 | 3 | 3 | 0 | 0 | 3 | 0 | 3 | 0 | 3 |
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
= 14x14 magic square
169 | 22 | 194 | 47 | 163 | 16 | 188 | 41 | 157 | 10 | 182 | 35 | 151 | 4 |
71 | 120 | 96 | 145 | 65 | 114 | 90 | 139 | 59 | 108 | 84 | 133 | 53 | 102 |
152 | 5 | 170 | 23 | 195 | 48 | 164 | 17 | 189 | 42 | 158 | 11 | 176 | 29 |
54 | 103 | 72 | 121 | 97 | 146 | 66 | 115 | 91 | 140 | 60 | 109 | 78 | 127 |
177 | 30 | 153 | 6 | 171 | 24 | 196 | 49 | 165 | 18 | 183 | 36 | 159 | 12 |
79 | 128 | 55 | 104 | 73 | 122 | 98 | 147 | 67 | 116 | 85 | 134 | 61 | 110 |
160 | 13 | 178 | 31 | 154 | 7 | 25 | 172 | 190 | 43 | 166 | 19 | 184 | 37 |
62 | 111 | 80 | 129 | 56 | 105 | 74 | 123 | 92 | 141 | 68 | 117 | 86 | 135 |
38 | 185 | 14 | 161 | 32 | 179 | 148 | 1 | 26 | 173 | 44 | 191 | 20 | 167 |
87 | 136 | 63 | 112 | 81 | 130 | 50 | 99 | 75 | 124 | 93 | 142 | 69 | 118 |
21 | 168 | 39 | 186 | 8 | 155 | 33 | 180 | 2 | 149 | 27 | 174 | 45 | 192 |
119 | 70 | 137 | 88 | 106 | 57 | 131 | 82 | 100 | 51 | 125 | 76 | 143 | 94 |
46 | 193 | 15 | 162 | 40 | 187 | 9 | 156 | 34 | 181 | 3 | 150 | 28 | 175 |
144 | 95 | 113 | 64 | 138 | 89 | 107 | 58 | 132 | 83 | 101 | 52 | 126 | 77 |
Use this method to construct even magic squares.
See 6x6, 8x8, 10x10, 12x12, 14x14, 16x16, 18x18, 20x20, 22x22, 24x24, 26x26, 28x28, 30x30 en 32x32