Use 25 proportional (semi)magic 3x3 squares to produce a 15x15 magic square. Proportional means that all 25 (semi)magic 3x3 squares have the same magic sum of (1/5 x 1695 = ) 339. Use the row and column coordinates of the 3x3 magic square. Don't use the numbers 0 up to 2, but 1 up to (25x3 = ) 75 instead. You must divide the row coordinates proportional over the 25 magic 3x3 squares. Use the table and connect each of the 5 rows to the other 5 rows to get (5x5x3 =) 75 row coordinates:
1 | 3 | 5 | 9 | |
2 | 5 | 2 | 9 | |
3 | 2 | 4 | 9 | |
4 | 4 | 1 | 9 | |
5 | 1 | 3 | 9 |
Construct the 25 (semi)magic 3x3 squares.
Row coordinate +75x column coordinate = (semi)magic 3x3 square
38 | 1 | 75 | 0 | 2 | 1 | 38 | 151 | 150 | ||
75 | 38 | 1 | 2 | 1 | 0 | 225 | 113 | 1 | ||
1 | 75 | 38 | 1 | 0 | 2 | 76 | 75 | 188 | ||
40 | 2 | 72 | 0 | 2 | 1 | 40 | 152 | 147 | ||
72 | 40 | 2 | 2 | 1 | 0 | 222 | 115 | 2 | ||
2 | 72 | 40 | 1 | 0 | 2 | 77 | 72 | 190 | ||
37 | 3 | 74 | 0 | 2 | 1 | 37 | 153 | 149 | ||
74 | 37 | 3 | 2 | 1 | 0 | 224 | 112 | 3 | ||
3 | 74 | 37 | 1 | 0 | 2 | 78 | 74 | 187 | ||
39 | 4 | 71 | 0 | 2 | 1 | 39 | 154 | 146 | ||
71 | 39 | 4 | 2 | 1 | 0 | 221 | 114 | 4 | ||
4 | 71 | 39 | 1 | 0 | 2 | 79 | 71 | 189 | ||
36 | 5 | 73 | 0 | 2 | 1 | 36 | 155 | 148 | ||
73 | 36 | 5 | 2 | 1 | 0 | 223 | 111 | 5 | ||
5 | 73 | 36 | 1 | 0 | 2 | 80 | 73 | 186 | ||
48 | 6 | 60 | 0 | 2 | 1 | 48 | 156 | 135 | ||
60 | 48 | 6 | 2 | 1 | 0 | 210 | 123 | 6 | ||
6 | 60 | 48 | 1 | 0 | 2 | 81 | 60 | 198 | ||
50 | 7 | 57 | 0 | 2 | 1 | 50 | 157 | 132 | ||
57 | 50 | 7 | 2 | 1 | 0 | 207 | 125 | 7 | ||
7 | 57 | 50 | 1 | 0 | 2 | 82 | 57 | 200 | ||
47 | 8 | 59 | 0 | 2 | 1 | 47 | 158 | 134 | ||
59 | 47 | 8 | 2 | 1 | 0 | 209 | 122 | 8 | ||
8 | 59 | 47 | 1 | 0 | 2 | 83 | 59 | 197 | ||
49 | 9 | 56 | 0 | 2 | 1 | 49 | 159 | 131 | ||
56 | 49 | 9 | 2 | 1 | 0 | 206 | 124 | 9 | ||
9 | 56 | 49 | 1 | 0 | 2 | 84 | 56 | 199 | ||
46 | 10 | 58 | 0 | 2 | 1 | 46 | 160 | 133 | ||
58 | 46 | 10 | 2 | 1 | 0 | 208 | 121 | 10 | ||
10 | 58 | 46 | 1 | 0 | 2 | 85 | 58 | 196 | ||
33 | 11 | 70 | 0 | 2 | 1 | 33 | 161 | 145 | ||
70 | 33 | 11 | 2 | 1 | 0 | 220 | 108 | 11 | ||
11 | 70 | 33 | 1 | 0 | 2 | 86 | 70 | 183 | ||
35 | 12 | 67 | 0 | 2 | 1 | 35 | 162 | 142 | ||
67 | 35 | 12 | 2 | 1 | 0 | 217 | 110 | 12 | ||
12 | 67 | 35 | 1 | 0 | 2 | 87 | 67 | 185 | ||
32 | 13 | 69 | 0 | 2 | 1 | 32 | 163 | 144 | ||
69 | 32 | 13 | 2 | 1 | 0 | 219 | 107 | 13 | ||
13 | 69 | 32 | 1 | 0 | 2 | 88 | 69 | 182 | ||
34 | 14 | 66 | 0 | 2 | 1 | 34 | 164 | 141 | ||
66 | 34 | 14 | 2 | 1 | 0 | 216 | 109 | 14 | ||
14 | 66 | 34 | 1 | 0 | 2 | 89 | 66 | 184 | ||
31 | 15 | 68 | 0 | 2 | 1 | 31 | 165 | 143 | ||
68 | 31 | 15 | 2 | 1 | 0 | 218 | 106 | 15 | ||
15 | 68 | 31 | 1 | 0 | 2 | 90 | 68 | 181 | ||
43 | 16 | 55 | 0 | 2 | 1 | 43 | 166 | 130 | ||
55 | 43 | 16 | 2 | 1 | 0 | 205 | 118 | 16 | ||
16 | 55 | 43 | 1 | 0 | 2 | 91 | 55 | 193 | ||
45 | 17 | 52 | 0 | 2 | 1 | 45 | 167 | 127 | ||
52 | 45 | 17 | 2 | 1 | 0 | 202 | 120 | 17 | ||
17 | 52 | 45 | 1 | 0 | 2 | 92 | 52 | 195 | ||
42 | 18 | 54 | 0 | 2 | 1 | 42 | 168 | 129 | ||
54 | 42 | 18 | 2 | 1 | 0 | 204 | 117 | 18 | ||
18 | 54 | 42 | 1 | 0 | 2 | 93 | 54 | 192 | ||
44 | 19 | 51 | 0 | 2 | 1 | 44 | 169 | 126 | ||
51 | 44 | 19 | 2 | 1 | 0 | 201 | 119 | 19 | ||
19 | 51 | 44 | 1 | 0 | 2 | 94 | 51 | 194 | ||
41 | 20 | 53 | 0 | 2 | 1 | 41 | 170 | 128 | ||
53 | 41 | 20 | 2 | 1 | 0 | 203 | 116 | 20 | ||
20 | 53 | 41 | 1 | 0 | 2 | 95 | 53 | 191 | ||
28 | 21 | 65 | 0 | 2 | 1 | 28 | 171 | 140 | ||
65 | 28 | 21 | 2 | 1 | 0 | 215 | 103 | 21 | ||
21 | 65 | 28 | 1 | 0 | 2 | 96 | 65 | 178 | ||
30 | 22 | 62 | 0 | 2 | 1 | 30 | 172 | 137 | ||
62 | 30 | 22 | 2 | 1 | 0 | 212 | 105 | 22 | ||
22 | 62 | 30 | 1 | 0 | 2 | 97 | 62 | 180 | ||
27 | 23 | 64 | 0 | 2 | 1 | 27 | 173 | 139 | ||
64 | 27 | 23 | 2 | 1 | 0 | 214 | 102 | 23 | ||
23 | 64 | 27 | 1 | 0 | 2 | 98 | 64 | 177 | ||
29 | 24 | 61 | 0 | 2 | 1 | 29 | 174 | 136 | ||
61 | 29 | 24 | 2 | 1 | 0 | 211 | 104 | 24 | ||
24 | 61 | 29 | 1 | 0 | 2 | 99 | 61 | 179 | ||
26 | 25 | 63 | 0 | 2 | 1 | 26 | 175 | 138 | ||
63 | 26 | 25 | 2 | 1 | 0 | 213 | 101 | 25 | ||
25 | 63 | 26 | 1 | 0 | 2 | 100 | 63 | 176 |
Put the 25 (semi)magic 3x3 squares together (for example in sequence of the middle number of the 3x3 sub-square):
15x15 magic square
26 | 175 | 138 | 27 | 173 | 139 | 28 | 171 | 140 | 29 | 174 | 136 | 30 | 172 | 137 |
213 | 101 | 25 | 214 | 102 | 23 | 215 | 103 | 21 | 211 | 104 | 24 | 212 | 105 | 22 |
100 | 63 | 176 | 98 | 64 | 177 | 96 | 65 | 178 | 99 | 61 | 179 | 97 | 62 | 180 |
31 | 165 | 143 | 32 | 163 | 144 | 33 | 161 | 145 | 34 | 164 | 141 | 35 | 162 | 142 |
218 | 106 | 15 | 219 | 107 | 13 | 220 | 108 | 11 | 216 | 109 | 14 | 217 | 110 | 12 |
90 | 68 | 181 | 88 | 69 | 182 | 86 | 70 | 183 | 89 | 66 | 184 | 87 | 67 | 185 |
36 | 155 | 148 | 37 | 153 | 149 | 38 | 151 | 150 | 39 | 154 | 146 | 40 | 152 | 147 |
223 | 111 | 5 | 224 | 112 | 3 | 225 | 113 | 1 | 221 | 114 | 4 | 222 | 115 | 2 |
80 | 73 | 186 | 78 | 74 | 187 | 76 | 75 | 188 | 79 | 71 | 189 | 77 | 72 | 190 |
41 | 170 | 128 | 42 | 168 | 129 | 43 | 166 | 130 | 44 | 169 | 126 | 45 | 167 | 127 |
203 | 116 | 20 | 204 | 117 | 18 | 205 | 118 | 16 | 201 | 119 | 19 | 202 | 120 | 17 |
95 | 53 | 191 | 93 | 54 | 192 | 91 | 55 | 193 | 94 | 51 | 194 | 92 | 52 | 195 |
46 | 160 | 133 | 47 | 158 | 134 | 48 | 156 | 135 | 49 | 159 | 131 | 50 | 157 | 132 |
208 | 121 | 10 | 209 | 122 | 8 | 210 | 123 | 6 | 206 | 124 | 9 | 207 | 125 | 7 |
85 | 58 | 196 | 83 | 59 | 197 | 81 | 60 | 198 | 84 | 56 | 199 | 82 | 57 | 200 |
Each 1/5 row/column give 1/5 of the magic sum and the 15x15 magic square is 3x3 compact.
I have used composite method, proportional (1) to construct
8x8, 9x9, 12x12a, 12x12b, 15x15a, 15x15b, 16x16a, 16x16b, 18x18, 20x20a, 20x20b, 21x21a, 21x21b, 24x24a, 24x24b, 24x24c, 27x27a, 27x27b, 28x28a, 28x28b, 30x30a, 30x30b,32x32a, 32x32b and 32x32c