Use 3x3 the same panmagic 5x5 square (as first grid) to construct a panmagic 15x15 and 5x5 compact square.
Construct the first row of the second grid:
The
sum of the numbers of each colour is 5
0 |
1 |
2 |
0 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
1 |
The sum of the numbers of each colour is 3
0 |
1 |
2 |
0 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
1 |
Construct row 2 up
to 15 by shifting the first row each time 3 places to the left.
The third grid is a reflection (rotated by a quarter and mirrored) of the second grid.
Take 1x number from 3x3 the same panmagic 5x5 square |
||||||||||||||
1 |
7 |
13 |
19 |
25 |
1 |
7 |
13 |
19 |
25 |
1 |
7 |
13 |
19 |
25 |
14 |
20 |
21 |
2 |
8 |
14 |
20 |
21 |
2 |
8 |
14 |
20 |
21 |
2 |
8 |
22 |
3 |
9 |
15 |
16 |
22 |
3 |
9 |
15 |
16 |
22 |
3 |
9 |
15 |
16 |
10 |
11 |
17 |
23 |
4 |
10 |
11 |
17 |
23 |
4 |
10 |
11 |
17 |
23 |
4 |
18 |
24 |
5 |
6 |
12 |
18 |
24 |
5 |
6 |
12 |
18 |
24 |
5 |
6 |
12 |
1 |
7 |
13 |
19 |
25 |
1 |
7 |
13 |
19 |
25 |
1 |
7 |
13 |
19 |
25 |
14 |
20 |
21 |
2 |
8 |
14 |
20 |
21 |
2 |
8 |
14 |
20 |
21 |
2 |
8 |
22 |
3 |
9 |
15 |
16 |
22 |
3 |
9 |
15 |
16 |
22 |
3 |
9 |
15 |
16 |
10 |
11 |
17 |
23 |
4 |
10 |
11 |
17 |
23 |
4 |
10 |
11 |
17 |
23 |
4 |
18 |
24 |
5 |
6 |
12 |
18 |
24 |
5 |
6 |
12 |
18 |
24 |
5 |
6 |
12 |
1 |
7 |
13 |
19 |
25 |
1 |
7 |
13 |
19 |
25 |
1 |
7 |
13 |
19 |
25 |
14 |
20 |
21 |
2 |
8 |
14 |
20 |
21 |
2 |
8 |
14 |
20 |
21 |
2 |
8 |
22 |
3 |
9 |
15 |
16 |
22 |
3 |
9 |
15 |
16 |
22 |
3 |
9 |
15 |
16 |
10 |
11 |
17 |
23 |
4 |
10 |
11 |
17 |
23 |
4 |
10 |
11 |
17 |
23 |
4 |
18 |
24 |
5 |
6 |
12 |
18 |
24 |
5 |
6 |
12 |
18 |
24 |
5 |
6 |
12 |
+ 25x number from second grid |
||||||||||||||
0 |
1 |
2 |
0 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
1 |
0 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
1 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
1 |
0 |
1 |
2 |
0 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
1 |
0 |
1 |
2 |
0 |
0 |
1 |
2 |
0 |
1 |
1 |
2 |
1 |
0 |
1 |
2 |
0 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
0 |
0 |
1 |
2 |
0 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
1 |
0 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
1 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
1 |
0 |
1 |
2 |
0 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
1 |
0 |
1 |
2 |
0 |
0 |
1 |
2 |
0 |
1 |
1 |
2 |
1 |
0 |
1 |
2 |
0 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
0 |
0 |
1 |
2 |
0 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
1 |
0 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
1 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
1 |
0 |
1 |
2 |
0 |
0 |
1 |
2 |
2 |
0 |
1 |
2 |
1 |
0 |
1 |
2 |
0 |
0 |
1 |
2 |
0 |
1 |
1 |
2 |
1 |
0 |
1 |
2 |
0 |
0 |
1 |
2 |
0 |
1 |
2 |
2 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
+ 75x number from third grid |
||||||||||||||
0 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
2 |
1 |
1 |
0 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
2 |
2 |
1 |
1 |
0 |
1 |
2 |
1 |
1 |
0 |
1 |
2 |
1 |
1 |
0 |
1 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
2 |
1 |
0 |
0 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
2 |
1 |
1 |
1 |
0 |
1 |
2 |
1 |
1 |
0 |
1 |
2 |
1 |
1 |
0 |
1 |
2 |
2 |
2 |
1 |
0 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
2 |
1 |
0 |
0 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
2 |
1 |
0 |
1 |
0 |
1 |
2 |
1 |
1 |
0 |
1 |
2 |
1 |
1 |
0 |
1 |
2 |
1 |
2 |
1 |
0 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
2 |
2 |
1 |
0 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
2 |
1 |
0 |
0 |
0 |
1 |
2 |
1 |
1 |
0 |
1 |
2 |
1 |
1 |
0 |
1 |
2 |
1 |
1 |
1 |
0 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
2 |
2 |
1 |
0 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
1 |
2 |
1 |
1 |
0 |
1 |
2 |
1 |
1 |
0 |
1 |
2 |
1 |
1 |
0 |
= panmagic 15x15 square |
||||||||||||||
1 |
32 |
213 |
169 |
100 |
26 |
57 |
163 |
194 |
150 |
51 |
7 |
188 |
219 |
125 |
89 |
20 |
46 |
202 |
158 |
114 |
70 |
71 |
152 |
183 |
139 |
45 |
21 |
177 |
208 |
222 |
78 |
109 |
65 |
141 |
172 |
103 |
134 |
40 |
91 |
197 |
128 |
84 |
15 |
116 |
60 |
211 |
167 |
123 |
54 |
35 |
161 |
192 |
148 |
4 |
10 |
186 |
217 |
98 |
29 |
43 |
74 |
180 |
156 |
112 |
68 |
24 |
155 |
181 |
137 |
18 |
49 |
205 |
206 |
87 |
76 |
107 |
63 |
94 |
175 |
101 |
132 |
13 |
119 |
225 |
126 |
82 |
38 |
144 |
200 |
164 |
170 |
121 |
52 |
8 |
189 |
220 |
146 |
2 |
33 |
214 |
195 |
96 |
27 |
58 |
72 |
153 |
184 |
140 |
66 |
22 |
178 |
209 |
115 |
16 |
47 |
203 |
159 |
90 |
41 |
135 |
61 |
92 |
198 |
129 |
110 |
11 |
117 |
223 |
79 |
85 |
36 |
142 |
173 |
104 |
193 |
149 |
30 |
6 |
187 |
218 |
99 |
5 |
31 |
212 |
168 |
124 |
55 |
56 |
162 |
151 |
182 |
138 |
19 |
25 |
176 |
207 |
88 |
44 |
75 |
201 |
157 |
113 |
69 |
50 |
14 |
95 |
196 |
127 |
83 |
39 |
145 |
221 |
77 |
108 |
64 |
120 |
171 |
102 |
133 |
147 |
3 |
34 |
215 |
216 |
97 |
28 |
59 |
190 |
166 |
122 |
53 |
9 |
165 |
191 |
210 |
136 |
17 |
48 |
204 |
185 |
86 |
42 |
73 |
154 |
160 |
111 |
67 |
23 |
179 |
118 |
224 |
105 |
81 |
37 |
143 |
174 |
80 |
106 |
62 |
93 |
199 |
130 |
131 |
12 |
This panmagic 15x15 square is also 5x5 compact.
You can use this method also to construct a 21x21 magic square (take 3x3 the same panmagic 7x7 square).