Use 4x the same Franklin panmagic 8x8 square and two reflecting grids to construct a most perfect Franklin panmagic 16x16 square.
Take 1x number
1 | 60 | 22 | 47 | 2 | 59 | 21 | 48 | 1 | 60 | 22 | 47 | 2 | 59 | 21 | 48 |
56 | 13 | 35 | 26 | 55 | 14 | 36 | 25 | 56 | 13 | 35 | 26 | 55 | 14 | 36 | 25 |
43 | 18 | 64 | 5 | 44 | 17 | 63 | 6 | 43 | 18 | 64 | 5 | 44 | 17 | 63 | 6 |
30 | 39 | 9 | 52 | 29 | 40 | 10 | 51 | 30 | 39 | 9 | 52 | 29 | 40 | 10 | 51 |
3 | 58 | 24 | 45 | 4 | 57 | 23 | 46 | 3 | 58 | 24 | 45 | 4 | 57 | 23 | 46 |
54 | 15 | 33 | 28 | 53 | 16 | 34 | 27 | 54 | 15 | 33 | 28 | 53 | 16 | 34 | 27 |
41 | 20 | 62 | 7 | 42 | 19 | 61 | 8 | 41 | 20 | 62 | 7 | 42 | 19 | 61 | 8 |
32 | 37 | 11 | 50 | 31 | 38 | 12 | 49 | 32 | 37 | 11 | 50 | 31 | 38 | 12 | 49 |
1 | 60 | 22 | 47 | 2 | 59 | 21 | 48 | 1 | 60 | 22 | 47 | 2 | 59 | 21 | 48 |
56 | 13 | 35 | 26 | 55 | 14 | 36 | 25 | 56 | 13 | 35 | 26 | 55 | 14 | 36 | 25 |
43 | 18 | 64 | 5 | 44 | 17 | 63 | 6 | 43 | 18 | 64 | 5 | 44 | 17 | 63 | 6 |
30 | 39 | 9 | 52 | 29 | 40 | 10 | 51 | 30 | 39 | 9 | 52 | 29 | 40 | 10 | 51 |
3 | 58 | 24 | 45 | 4 | 57 | 23 | 46 | 3 | 58 | 24 | 45 | 4 | 57 | 23 | 46 |
54 | 15 | 33 | 28 | 53 | 16 | 34 | 27 | 54 | 15 | 33 | 28 | 53 | 16 | 34 | 27 |
41 | 20 | 62 | 7 | 42 | 19 | 61 | 8 | 41 | 20 | 62 | 7 | 42 | 19 | 61 | 8 |
32 | 37 | 11 | 50 | 31 | 38 | 12 | 49 | 32 | 37 | 11 | 50 | 31 | 38 | 12 | 49 |
+64x number
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 |
+128x number
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
Most perfect Franklin panmagic 16x16 square
1 | 252 | 86 | 175 | 2 | 251 | 85 | 176 | 65 | 188 | 22 | 239 | 66 | 187 | 21 | 240 |
248 | 13 | 163 | 90 | 247 | 14 | 164 | 89 | 184 | 77 | 227 | 26 | 183 | 78 | 228 | 25 |
171 | 82 | 256 | 5 | 172 | 81 | 255 | 6 | 235 | 18 | 192 | 69 | 236 | 17 | 191 | 70 |
94 | 167 | 9 | 244 | 93 | 168 | 10 | 243 | 30 | 231 | 73 | 180 | 29 | 232 | 74 | 179 |
3 | 250 | 88 | 173 | 4 | 249 | 87 | 174 | 67 | 186 | 24 | 237 | 68 | 185 | 23 | 238 |
246 | 15 | 161 | 92 | 245 | 16 | 162 | 91 | 182 | 79 | 225 | 28 | 181 | 80 | 226 | 27 |
169 | 84 | 254 | 7 | 170 | 83 | 253 | 8 | 233 | 20 | 190 | 71 | 234 | 19 | 189 | 72 |
96 | 165 | 11 | 242 | 95 | 166 | 12 | 241 | 32 | 229 | 75 | 178 | 31 | 230 | 76 | 177 |
129 | 124 | 214 | 47 | 130 | 123 | 213 | 48 | 193 | 60 | 150 | 111 | 194 | 59 | 149 | 112 |
120 | 141 | 35 | 218 | 119 | 142 | 36 | 217 | 56 | 205 | 99 | 154 | 55 | 206 | 100 | 153 |
43 | 210 | 128 | 133 | 44 | 209 | 127 | 134 | 107 | 146 | 64 | 197 | 108 | 145 | 63 | 198 |
222 | 39 | 137 | 116 | 221 | 40 | 138 | 115 | 158 | 103 | 201 | 52 | 157 | 104 | 202 | 51 |
131 | 122 | 216 | 45 | 132 | 121 | 215 | 46 | 195 | 58 | 152 | 109 | 196 | 57 | 151 | 110 |
118 | 143 | 33 | 220 | 117 | 144 | 34 | 219 | 54 | 207 | 97 | 156 | 53 | 208 | 98 | 155 |
41 | 212 | 126 | 135 | 42 | 211 | 125 | 136 | 105 | 148 | 62 | 199 | 106 | 147 | 61 | 200 |
224 | 37 | 139 | 114 | 223 | 38 | 140 | 113 | 160 | 101 | 203 | 50 | 159 | 102 | 204 | 49 |
This 16x16 magic square is panmagic, 2x2 compact and each 1/4 row/column/diagonal gives 1/4 of the magic sum. Notify that the 16x16 magic square has the tight 'Willem Barink' structure.
Use basic pattern method (1) to construct magic squares of order is multiple of 4 from 8x8 to infinity. See 8x8, 12x12, 16x16a, 16x16b, 16x16c, 20x20, 24x24a, 24x24b, 28x28, 32x32a, 32x32b, 32x32c and 32x32d