The perfect magic square must be a 16x16 magic square. I put an almost perfect 16x16 magic square on my website and asked for a challenge.
Ot Ottenheim from the Netherlands won the challenge and produced the real perfect magic square below.
The perfect magic square
1 |
240 |
84 |
189 |
2 |
239 |
83 |
190 |
3 |
238 |
82 |
191 |
4 |
237 |
81 |
192 |
224 |
49 |
141 |
100 |
223 |
50 |
142 |
99 |
222 |
51 |
143 |
98 |
221 |
52 |
144 |
97 |
173 |
68 |
256 |
17 |
174 |
67 |
255 |
18 |
175 |
66 |
254 |
19 |
176 |
65 |
253 |
20 |
116 |
157 |
33 |
208 |
115 |
158 |
34 |
207 |
114 |
159 |
35 |
206 |
113 |
160 |
36 |
205 |
5 |
236 |
88 |
185 |
6 |
235 |
87 |
186 |
7 |
234 |
86 |
187 |
8 |
233 |
85 |
188 |
220 |
53 |
137 |
104 |
219 |
54 |
138 |
103 |
218 |
55 |
139 |
102 |
217 |
56 |
140 |
101 |
169 |
72 |
252 |
21 |
170 |
71 |
251 |
22 |
171 |
70 |
250 |
23 |
172 |
69 |
249 |
24 |
120 |
153 |
37 |
204 |
119 |
154 |
38 |
203 |
118 |
155 |
39 |
202 |
117 |
156 |
40 |
201 |
9 |
232 |
92 |
181 |
10 |
231 |
91 |
182 |
11 |
230 |
90 |
183 |
12 |
229 |
89 |
184 |
216 |
57 |
133 |
108 |
215 |
58 |
134 |
107 |
214 |
59 |
135 |
106 |
213 |
60 |
136 |
105 |
165 |
76 |
248 |
25 |
166 |
75 |
247 |
26 |
167 |
74 |
246 |
27 |
168 |
73 |
245 |
28 |
124 |
149 |
41 |
200 |
123 |
150 |
42 |
199 |
122 |
151 |
43 |
198 |
121 |
152 |
44 |
197 |
13 |
228 |
96 |
177 |
14 |
227 |
95 |
178 |
15 |
226 |
94 |
179 |
16 |
225 |
93 |
180 |
212 |
61 |
129 |
112 |
211 |
62 |
130 |
111 |
210 |
63 |
131 |
110 |
209 |
64 |
132 |
109 |
161 |
80 |
244 |
29 |
162 |
79 |
243 |
30 |
163 |
78 |
242 |
31 |
164 |
77 |
241 |
32 |
128 |
145 |
45 |
196 |
127 |
146 |
46 |
195 |
126 |
147 |
47 |
194 |
125 |
148 |
48 |
193 |
This magic 16x16 square is the real perfect magic square, because of the following magic features:
(1) The magic square consists of four by four proportional panmagic 4x4 sub-squares and because of that structure each 1/4 row/column/diagonal gives 1/4 of the magic sum. The 4x4 sub-squares are perfectly connected, so the 16x16 magic square is panmagic and fully 2x2 compact (which means that each random chosen 2x2 sub-square gives 1/4 of the magic sum = 514). The conclusion is that the 16x16 magic square is (Franklin panmagic) most perfect.
(2) The magic square has got the tight 'Willem Barink' structure. Horizontally the sum of 2 numbers (of cell 1+2, 3+4, 5+6, 7+8. 9+10, 11+12, 13+14 and 15+16) gives 241 respectively 273. Vertically the sum of 2 numbers (of cell 1+2, 3+4, 5+6, 7+8. 9+10, 11+12, 13+14 and 15+16) gives 225 and 289 respectively.
241 |
273 |
241 |
273 |
241 |
273 |
241 |
273 |
273 |
241 |
273 |
241 |
273 |
241 |
273 |
241 |
241 |
273 |
241 |
273 |
241 |
273 |
241 |
273 |
273 |
241 |
273 |
241 |
273 |
241 |
273 |
241 |
241 |
273 |
241 |
273 |
241 |
273 |
241 |
273 |
273 |
241 |
273 |
241 |
273 |
241 |
273 |
241 |
241 |
273 |
241 |
273 |
241 |
273 |
241 |
273 |
273 |
241 |
273 |
241 |
273 |
241 |
273 |
241 |
241 |
273 |
241 |
273 |
241 |
273 |
241 |
273 |
273 |
241 |
273 |
241 |
273 |
241 |
273 |
241 |
241 |
273 |
241 |
273 |
241 |
273 |
241 |
273 |
273 |
241 |
273 |
241 |
273 |
241 |
273 |
241 |
241 |
273 |
241 |
273 |
241 |
273 |
241 |
273 |
273 |
241 |
273 |
241 |
273 |
241 |
273 |
241 |
241 |
273 |
241 |
273 |
241 |
273 |
241 |
273 |
273 |
241 |
273 |
241 |
273 |
241 |
273 |
241 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
|
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
|
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
|
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
|
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
|
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
|
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
|
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
289 |
225 |
|
(3) In each 4x4 sub-square you can find a number from each of the 16 sequences, 1 up to 16, 17 up to 32, 33 up to 48, 49 up to 64, 65 up to 80, 81 up to 96, 97 up to 112, 113 up to 128, 129 up to 144, 145 up to 160, 161 up to 176, 177 up to 192, 193 up to 208, 209 up to 224, 225 up to 240 and 241 up to 256 respectively. The numbers of each sequence are in order from low to high, starting from one of the four corners. And as a finishing touch, the first four sequences start from the top left corner, the second four sequences start from the top right corner, the third four sequences start from the do bottom left corner and the fourth four sequences start from the bottom right corner.
A more perfect square does not exist.
For analysis of the perfect magic square, see the download below.
To produce an Ot Ottenheim perfect magic square for each order is multiple of 4, from 8x8 (to infinite), see download (developed from 8x8 up to 32x32) below.