Use the method of
Gronogo (source: http://www.grogono.com/magic/6x6.php) to construct a 18x18
magic square
Take 1x number
77 | 77 | 58 | 58 | 39 | 39 | 20 | 20 | 1 | 1 | 72 | 72 | 53 | 53 | 34 | 34 | 15 | 15 |
77 | 77 | 58 | 58 | 39 | 39 | 20 | 20 | 1 | 1 | 72 | 72 | 53 | 53 | 34 | 34 | 15 | 15 |
6 | 6 | 68 | 68 | 49 | 49 | 30 | 30 | 11 | 11 | 73 | 73 | 63 | 63 | 44 | 44 | 25 | 25 |
6 | 6 | 68 | 68 | 49 | 49 | 30 | 30 | 11 | 11 | 73 | 73 | 63 | 63 | 44 | 44 | 25 | 25 |
16 | 16 | 78 | 78 | 59 | 59 | 40 | 40 | 21 | 21 | 2 | 2 | 64 | 64 | 54 | 54 | 35 | 35 |
16 | 16 | 78 | 78 | 59 | 59 | 40 | 40 | 21 | 21 | 2 | 2 | 64 | 64 | 54 | 54 | 35 | 35 |
26 | 26 | 7 | 7 | 69 | 69 | 50 | 50 | 31 | 31 | 12 | 12 | 74 | 74 | 55 | 55 | 45 | 45 |
26 | 26 | 7 | 7 | 69 | 69 | 50 | 50 | 31 | 31 | 12 | 12 | 74 | 74 | 55 | 55 | 45 | 45 |
36 | 36 | 17 | 17 | 79 | 79 | 60 | 60 | 41 | 41 | 22 | 22 | 3 | 3 | 65 | 65 | 46 | 46 |
36 | 36 | 17 | 17 | 79 | 79 | 60 | 60 | 41 | 41 | 22 | 22 | 3 | 3 | 65 | 65 | 46 | 46 |
37 | 37 | 27 | 27 | 8 | 8 | 70 | 70 | 51 | 51 | 32 | 32 | 13 | 13 | 75 | 75 | 56 | 56 |
37 | 37 | 27 | 27 | 8 | 8 | 70 | 70 | 51 | 51 | 32 | 32 | 13 | 13 | 75 | 75 | 56 | 56 |
47 | 47 | 28 | 28 | 18 | 18 | 80 | 80 | 61 | 61 | 42 | 42 | 23 | 23 | 4 | 4 | 66 | 66 |
47 | 47 | 28 | 28 | 18 | 18 | 80 | 80 | 61 | 61 | 42 | 42 | 23 | 23 | 4 | 4 | 66 | 66 |
57 | 57 | 38 | 38 | 19 | 19 | 9 | 9 | 71 | 71 | 52 | 52 | 33 | 33 | 14 | 14 | 76 | 76 |
57 | 57 | 38 | 38 | 19 | 19 | 9 | 9 | 71 | 71 | 52 | 52 | 33 | 33 | 14 | 14 | 76 | 76 |
67 | 67 | 48 | 48 | 29 | 29 | 10 | 10 | 81 | 81 | 62 | 62 | 43 | 43 | 24 | 24 | 5 | 5 |
67 | 67 | 48 | 48 | 29 | 29 | 10 | 10 | 81 | 81 | 62 | 62 | 43 | 43 | 24 | 24 | 5 | 5 |
+81x number
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
+162x number
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
= 18x18 magic square
77 | 320 | 220 | 301 | 201 | 282 | 182 | 263 | 163 | 244 | 72 | 153 | 53 | 134 | 34 | 115 | 15 | 96 |
239 | 158 | 139 | 58 | 120 | 39 | 101 | 20 | 82 | 1 | 315 | 234 | 296 | 215 | 277 | 196 | 258 | 177 |
168 | 249 | 230 | 311 | 211 | 292 | 192 | 273 | 11 | 92 | 73 | 154 | 63 | 144 | 44 | 125 | 187 | 106 |
6 | 87 | 68 | 149 | 49 | 130 | 30 | 111 | 173 | 254 | 235 | 316 | 225 | 306 | 206 | 287 | 25 | 268 |
178 | 259 | 240 | 321 | 221 | 302 | 202 | 283 | 21 | 102 | 2 | 83 | 64 | 145 | 54 | 135 | 197 | 116 |
16 | 97 | 78 | 159 | 59 | 140 | 40 | 121 | 183 | 264 | 164 | 245 | 226 | 307 | 216 | 297 | 35 | 278 |
188 | 269 | 169 | 250 | 231 | 312 | 212 | 293 | 31 | 112 | 12 | 93 | 74 | 155 | 55 | 136 | 207 | 126 |
26 | 107 | 7 | 88 | 69 | 150 | 50 | 131 | 193 | 274 | 174 | 255 | 236 | 317 | 217 | 298 | 45 | 288 |
279 | 198 | 179 | 260 | 241 | 322 | 222 | 303 | 41 | 122 | 22 | 103 | 3 | 84 | 65 | 146 | 208 | 127 |
117 | 36 | 17 | 98 | 79 | 160 | 60 | 141 | 203 | 284 | 184 | 265 | 165 | 246 | 227 | 308 | 46 | 289 |
280 | 199 | 270 | 189 | 251 | 170 | 313 | 232 | 132 | 51 | 113 | 32 | 94 | 13 | 156 | 75 | 299 | 56 |
118 | 37 | 108 | 27 | 89 | 8 | 151 | 70 | 294 | 213 | 275 | 194 | 256 | 175 | 318 | 237 | 137 | 218 |
290 | 209 | 271 | 190 | 261 | 180 | 323 | 242 | 142 | 61 | 123 | 42 | 104 | 23 | 85 | 4 | 309 | 66 |
128 | 47 | 109 | 28 | 99 | 18 | 161 | 80 | 304 | 223 | 285 | 204 | 266 | 185 | 247 | 166 | 147 | 228 |
300 | 219 | 281 | 200 | 262 | 181 | 252 | 171 | 152 | 71 | 133 | 52 | 114 | 33 | 95 | 14 | 319 | 76 |
138 | 57 | 119 | 38 | 100 | 19 | 90 | 9 | 314 | 233 | 295 | 214 | 276 | 195 | 257 | 176 | 157 | 238 |
310 | 229 | 291 | 210 | 272 | 191 | 253 | 172 | 162 | 81 | 143 | 62 | 124 | 43 | 105 | 24 | 248 | 5 |
67 | 148 | 129 | 48 | 110 | 29 | 91 | 10 | 324 | 243 | 305 | 224 | 286 | 205 | 267 | 186 | 86 | 167 |
Use the method of reflecting grids (2) to construct magic squares of order is double odd. See 6x6, 10x10, 14x14, 18x18, 22x22, 26x26 en 30x30