René Chrétien had noticed the 15x15 composite (4) magic square and showed me it is possible to use the method to construct magic squares of even orders as well.
Construct the 20x20 magic square by using 4 proportional 10x10 magic squares. The squares are proportional because all 4 magic 10x10 squares have the same magic sum of (1/2 x 4010 = ) 2005. We use the method with reflecting grids (10x10) to produce the magic 10x10 squares. As row coordinates don't use 0 up to 9 but use 0 up to (4x10 -/- 1 = ) 39 instead. Take care that the sum of the row coordinates in each 10x10 square is the same (0+7+8+15+16+23+24+31+32+39 = 1+6+9+14+17+22+25+30+33+38 = 2+5+10+13+18+21+26+29+34+37 = 3+4+11+12+19+20+27+28+35+36 = 195) to get proportional squares.
1x row coordinate +40x column coordinate + 1 = 10x10 magic square
0 | 7 | 31 | 24 | 23 | 16 | 15 | 8 | 32 | 39 | 0 | 9 | 9 | 9 | 9 | 0 | 0 | 9 | 0 | 0 | 1 | 368 | 392 | 385 | 384 | 17 | 16 | 369 | 33 | 40 | ||
39 | 7 | 31 | 24 | 23 | 16 | 15 | 8 | 32 | 0 | 1 | 1 | 8 | 8 | 8 | 8 | 8 | 1 | 1 | 1 | 80 | 48 | 352 | 345 | 344 | 337 | 336 | 49 | 73 | 41 | ||
39 | 32 | 8 | 24 | 23 | 16 | 15 | 31 | 7 | 0 | 7 | 7 | 2 | 7 | 2 | 2 | 7 | 2 | 7 | 2 | 320 | 313 | 89 | 305 | 104 | 97 | 296 | 112 | 288 | 81 | ||
39 | 32 | 31 | 15 | 23 | 16 | 24 | 8 | 7 | 0 | 6 | 6 | 6 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 280 | 273 | 272 | 136 | 144 | 137 | 145 | 129 | 248 | 241 | ||
39 | 32 | 8 | 15 | 16 | 23 | 24 | 31 | 7 | 0 | 5 | 5 | 5 | 5 | 4 | 4 | 4 | 4 | 4 | 5 | 240 | 233 | 209 | 216 | 177 | 184 | 185 | 192 | 168 | 201 | ||
0 | 32 | 8 | 15 | 16 | 23 | 24 | 31 | 7 | 39 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 4 | 161 | 193 | 169 | 176 | 217 | 224 | 225 | 232 | 208 | 200 | ||
0 | 32 | 31 | 15 | 16 | 23 | 24 | 8 | 7 | 39 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 3 | 3 | 121 | 153 | 152 | 256 | 257 | 264 | 265 | 249 | 128 | 160 | ||
39 | 7 | 8 | 15 | 16 | 23 | 24 | 31 | 32 | 0 | 2 | 2 | 7 | 2 | 7 | 7 | 2 | 7 | 2 | 7 | 120 | 88 | 289 | 96 | 297 | 304 | 105 | 312 | 113 | 281 | ||
0 | 7 | 31 | 24 | 16 | 23 | 15 | 8 | 32 | 39 | 8 | 8 | 1 | 1 | 1 | 1 | 1 | 8 | 8 | 8 | 321 | 328 | 72 | 65 | 57 | 64 | 56 | 329 | 353 | 360 | ||
0 | 7 | 8 | 24 | 23 | 16 | 15 | 31 | 32 | 39 | 9 | 0 | 0 | 0 | 0 | 9 | 9 | 0 | 9 | 9 | 361 | 8 | 9 | 25 | 24 | 377 | 376 | 32 | 393 | 400 | ||
1 | 6 | 30 | 25 | 22 | 17 | 14 | 9 | 33 | 38 | 0 | 9 | 9 | 9 | 9 | 0 | 0 | 9 | 0 | 0 | 2 | 367 | 391 | 386 | 383 | 18 | 15 | 370 | 34 | 39 | ||
38 | 6 | 30 | 25 | 22 | 17 | 14 | 9 | 33 | 1 | 1 | 1 | 8 | 8 | 8 | 8 | 8 | 1 | 1 | 1 | 79 | 47 | 351 | 346 | 343 | 338 | 335 | 50 | 74 | 42 | ||
38 | 33 | 9 | 25 | 22 | 17 | 14 | 30 | 6 | 1 | 7 | 7 | 2 | 7 | 2 | 2 | 7 | 2 | 7 | 2 | 319 | 314 | 90 | 306 | 103 | 98 | 295 | 111 | 287 | 82 | ||
38 | 33 | 30 | 14 | 22 | 17 | 25 | 9 | 6 | 1 | 6 | 6 | 6 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 279 | 274 | 271 | 135 | 143 | 138 | 146 | 130 | 247 | 242 | ||
38 | 33 | 9 | 14 | 17 | 22 | 25 | 30 | 6 | 1 | 5 | 5 | 5 | 5 | 4 | 4 | 4 | 4 | 4 | 5 | 239 | 234 | 210 | 215 | 178 | 183 | 186 | 191 | 167 | 202 | ||
1 | 33 | 9 | 14 | 17 | 22 | 25 | 30 | 6 | 38 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 4 | 162 | 194 | 170 | 175 | 218 | 223 | 226 | 231 | 207 | 199 | ||
1 | 33 | 30 | 14 | 17 | 22 | 25 | 9 | 6 | 38 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 3 | 3 | 122 | 154 | 151 | 255 | 258 | 263 | 266 | 250 | 127 | 159 | ||
38 | 6 | 9 | 14 | 17 | 22 | 25 | 30 | 33 | 1 | 2 | 2 | 7 | 2 | 7 | 7 | 2 | 7 | 2 | 7 | 119 | 87 | 290 | 95 | 298 | 303 | 106 | 311 | 114 | 282 | ||
1 | 6 | 30 | 25 | 17 | 22 | 14 | 9 | 33 | 38 | 8 | 8 | 1 | 1 | 1 | 1 | 1 | 8 | 8 | 8 | 322 | 327 | 71 | 66 | 58 | 63 | 55 | 330 | 354 | 359 | ||
1 | 6 | 9 | 25 | 22 | 17 | 14 | 30 | 33 | 38 | 9 | 0 | 0 | 0 | 0 | 9 | 9 | 0 | 9 | 9 | 362 | 7 | 10 | 26 | 23 | 378 | 375 | 31 | 394 | 399 | ||
2 | 5 | 29 | 26 | 21 | 18 | 13 | 10 | 34 | 37 | 0 | 9 | 9 | 9 | 9 | 0 | 0 | 9 | 0 | 0 | 3 | 366 | 390 | 387 | 382 | 19 | 14 | 371 | 35 | 38 | ||
37 | 5 | 29 | 26 | 21 | 18 | 13 | 10 | 34 | 2 | 1 | 1 | 8 | 8 | 8 | 8 | 8 | 1 | 1 | 1 | 78 | 46 | 350 | 347 | 342 | 339 | 334 | 51 | 75 | 43 | ||
37 | 34 | 10 | 26 | 21 | 18 | 13 | 29 | 5 | 2 | 7 | 7 | 2 | 7 | 2 | 2 | 7 | 2 | 7 | 2 | 318 | 315 | 91 | 307 | 102 | 99 | 294 | 110 | 286 | 83 | ||
37 | 34 | 29 | 13 | 21 | 18 | 26 | 10 | 5 | 2 | 6 | 6 | 6 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 278 | 275 | 270 | 134 | 142 | 139 | 147 | 131 | 246 | 243 | ||
37 | 34 | 10 | 13 | 18 | 21 | 26 | 29 | 5 | 2 | 5 | 5 | 5 | 5 | 4 | 4 | 4 | 4 | 4 | 5 | 238 | 235 | 211 | 214 | 179 | 182 | 187 | 190 | 166 | 203 | ||
2 | 34 | 10 | 13 | 18 | 21 | 26 | 29 | 5 | 37 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 4 | 163 | 195 | 171 | 174 | 219 | 222 | 227 | 230 | 206 | 198 | ||
2 | 34 | 29 | 13 | 18 | 21 | 26 | 10 | 5 | 37 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 3 | 3 | 123 | 155 | 150 | 254 | 259 | 262 | 267 | 251 | 126 | 158 | ||
37 | 5 | 10 | 13 | 18 | 21 | 26 | 29 | 34 | 2 | 2 | 2 | 7 | 2 | 7 | 7 | 2 | 7 | 2 | 7 | 118 | 86 | 291 | 94 | 299 | 302 | 107 | 310 | 115 | 283 | ||
2 | 5 | 29 | 26 | 18 | 21 | 13 | 10 | 34 | 37 | 8 | 8 | 1 | 1 | 1 | 1 | 1 | 8 | 8 | 8 | 323 | 326 | 70 | 67 | 59 | 62 | 54 | 331 | 355 | 358 | ||
2 | 5 | 10 | 26 | 21 | 18 | 13 | 29 | 34 | 37 | 9 | 0 | 0 | 0 | 0 | 9 | 9 | 0 | 9 | 9 | 363 | 6 | 11 | 27 | 22 | 379 | 374 | 30 | 395 | 398 | ||
3 | 4 | 28 | 27 | 20 | 19 | 12 | 11 | 35 | 36 | 0 | 9 | 9 | 9 | 9 | 0 | 0 | 9 | 0 | 0 | 4 | 365 | 389 | 388 | 381 | 20 | 13 | 372 | 36 | 37 | ||
36 | 4 | 28 | 27 | 20 | 19 | 12 | 11 | 35 | 3 | 1 | 1 | 8 | 8 | 8 | 8 | 8 | 1 | 1 | 1 | 77 | 45 | 349 | 348 | 341 | 340 | 333 | 52 | 76 | 44 | ||
36 | 35 | 11 | 27 | 20 | 19 | 12 | 28 | 4 | 3 | 7 | 7 | 2 | 7 | 2 | 2 | 7 | 2 | 7 | 2 | 317 | 316 | 92 | 308 | 101 | 100 | 293 | 109 | 285 | 84 | ||
36 | 35 | 28 | 12 | 20 | 19 | 27 | 11 | 4 | 3 | 6 | 6 | 6 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 277 | 276 | 269 | 133 | 141 | 140 | 148 | 132 | 245 | 244 | ||
36 | 35 | 11 | 12 | 19 | 20 | 27 | 28 | 4 | 3 | 5 | 5 | 5 | 5 | 4 | 4 | 4 | 4 | 4 | 5 | 237 | 236 | 212 | 213 | 180 | 181 | 188 | 189 | 165 | 204 | ||
3 | 35 | 11 | 12 | 19 | 20 | 27 | 28 | 4 | 36 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | 4 | 164 | 196 | 172 | 173 | 220 | 221 | 228 | 229 | 205 | 197 | ||
3 | 35 | 28 | 12 | 19 | 20 | 27 | 11 | 4 | 36 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 3 | 3 | 124 | 156 | 149 | 253 | 260 | 261 | 268 | 252 | 125 | 157 | ||
36 | 4 | 11 | 12 | 19 | 20 | 27 | 28 | 35 | 3 | 2 | 2 | 7 | 2 | 7 | 7 | 2 | 7 | 2 | 7 | 117 | 85 | 292 | 93 | 300 | 301 | 108 | 309 | 116 | 284 | ||
3 | 4 | 28 | 27 | 19 | 20 | 12 | 11 | 35 | 36 | 8 | 8 | 1 | 1 | 1 | 1 | 1 | 8 | 8 | 8 | 324 | 325 | 69 | 68 | 60 | 61 | 53 | 332 | 356 | 357 | ||
3 | 4 | 11 | 27 | 20 | 19 | 12 | 28 | 35 | 36 | 9 | 0 | 0 | 0 | 0 | 9 | 9 | 0 | 9 | 9 | 364 | 5 | 12 | 28 | 21 | 380 | 373 | 29 | 396 | 397 |
Put the 4 magic 10x10 sub-squares together.
20x20 magic square
1 | 368 | 392 | 385 | 384 | 17 | 16 | 369 | 33 | 40 | 2 | 367 | 391 | 386 | 383 | 18 | 15 | 370 | 34 | 39 |
80 | 48 | 352 | 345 | 344 | 337 | 336 | 49 | 73 | 41 | 79 | 47 | 351 | 346 | 343 | 338 | 335 | 50 | 74 | 42 |
320 | 313 | 89 | 305 | 104 | 97 | 296 | 112 | 288 | 81 | 319 | 314 | 90 | 306 | 103 | 98 | 295 | 111 | 287 | 82 |
280 | 273 | 272 | 136 | 144 | 137 | 145 | 129 | 248 | 241 | 279 | 274 | 271 | 135 | 143 | 138 | 146 | 130 | 247 | 242 |
240 | 233 | 209 | 216 | 177 | 184 | 185 | 192 | 168 | 201 | 239 | 234 | 210 | 215 | 178 | 183 | 186 | 191 | 167 | 202 |
161 | 193 | 169 | 176 | 217 | 224 | 225 | 232 | 208 | 200 | 162 | 194 | 170 | 175 | 218 | 223 | 226 | 231 | 207 | 199 |
121 | 153 | 152 | 256 | 257 | 264 | 265 | 249 | 128 | 160 | 122 | 154 | 151 | 255 | 258 | 263 | 266 | 250 | 127 | 159 |
120 | 88 | 289 | 96 | 297 | 304 | 105 | 312 | 113 | 281 | 119 | 87 | 290 | 95 | 298 | 303 | 106 | 311 | 114 | 282 |
321 | 328 | 72 | 65 | 57 | 64 | 56 | 329 | 353 | 360 | 322 | 327 | 71 | 66 | 58 | 63 | 55 | 330 | 354 | 359 |
361 | 8 | 9 | 25 | 24 | 377 | 376 | 32 | 393 | 400 | 362 | 7 | 10 | 26 | 23 | 378 | 375 | 31 | 394 | 399 |
3 | 366 | 390 | 387 | 382 | 19 | 14 | 371 | 35 | 38 | 4 | 365 | 389 | 388 | 381 | 20 | 13 | 372 | 36 | 37 |
78 | 46 | 350 | 347 | 342 | 339 | 334 | 51 | 75 | 43 | 77 | 45 | 349 | 348 | 341 | 340 | 333 | 52 | 76 | 44 |
318 | 315 | 91 | 307 | 102 | 99 | 294 | 110 | 286 | 83 | 317 | 316 | 92 | 308 | 101 | 100 | 293 | 109 | 285 | 84 |
278 | 275 | 270 | 134 | 142 | 139 | 147 | 131 | 246 | 243 | 277 | 276 | 269 | 133 | 141 | 140 | 148 | 132 | 245 | 244 |
238 | 235 | 211 | 214 | 179 | 182 | 187 | 190 | 166 | 203 | 237 | 236 | 212 | 213 | 180 | 181 | 188 | 189 | 165 | 204 |
163 | 195 | 171 | 174 | 219 | 222 | 227 | 230 | 206 | 198 | 164 | 196 | 172 | 173 | 220 | 221 | 228 | 229 | 205 | 197 |
123 | 155 | 150 | 254 | 259 | 262 | 267 | 251 | 126 | 158 | 124 | 156 | 149 | 253 | 260 | 261 | 268 | 252 | 125 | 157 |
118 | 86 | 291 | 94 | 299 | 302 | 107 | 310 | 115 | 283 | 117 | 85 | 292 | 93 | 300 | 301 | 108 | 309 | 116 | 284 |
323 | 326 | 70 | 67 | 59 | 62 | 54 | 331 | 355 | 358 | 324 | 325 | 69 | 68 | 60 | 61 | 53 | 332 | 356 | 357 |
363 | 6 | 11 | 27 | 22 | 379 | 374 | 30 | 395 | 398 | 364 | 5 | 12 | 28 | 21 | 380 | 373 | 29 | 396 | 397 |
Each 1/2 row/column/diagonal gives 1/2 of the magic sum and the 20x20 magic square is 10x10 compact. All the numbers are in sequence in the 20x20 magic square, starting in the 10x10 sub-square top left, going right/down and backwards.
I have used composite method, proportional (1) to construct
8x8, 9x9, 12x12a, 12x12b, 15x15a, 15x15b, 16x16a, 16x16b, 18x18, 20x20a, 20x20b, 21x21a, 21x21b, 24x24a, 24x24b, 24x24c, 27x27a, 27x27b, 28x28a, 28x28b, 30x30a, 30x30b,32x32a, 32x32b and 32x32c