René Chrétien had noticed the 15x15 composite (4) magic square and showed me it is possible to use the method to construct magic squares of even orders as well.
Construct the 20x20 magic square by using 25 proportional 4x4 panmagic squares. The squares are proportional because all 25 panmagic 4x4 squares have the same magic sum of (1/5 x 4010 = ) 802. We use the basic key method (4x4) to produce the panmagic 4x4 squares. As row coordinates don't use 0 up to 3 but use 0 up to (25x4 -/- 1 = ) 99 instead. Take care that the sum of the row coordinates in each 4x4 square is the same (0+49+50+99 = 1+48+51+98 = ... = 24+25+74+75 = 198) to get proportional squares.
1x row coordinate +100x column coordinate + 1 = panmagic 4x4 square
0 | 49 | 50 | 99 | 0 | 3 | 1 | 2 | 1 | 350 | 151 | 300 | ||
50 | 99 | 0 | 49 | 3 | 0 | 2 | 1 | 351 | 100 | 201 | 150 | ||
49 | 0 | 99 | 50 | 2 | 1 | 3 | 0 | 250 | 101 | 400 | 51 | ||
99 | 50 | 49 | 0 | 1 | 2 | 0 | 3 | 200 | 251 | 50 | 301 | ||
1 | 48 | 51 | 98 | 0 | 3 | 1 | 2 | 2 | 349 | 152 | 299 | ||
51 | 98 | 1 | 48 | 3 | 0 | 2 | 1 | 352 | 99 | 202 | 149 | ||
48 | 1 | 98 | 51 | 2 | 1 | 3 | 0 | 249 | 102 | 399 | 52 | ||
98 | 51 | 48 | 1 | 1 | 2 | 0 | 3 | 199 | 252 | 49 | 302 | ||
2 | 47 | 52 | 97 | 0 | 3 | 1 | 2 | 3 | 348 | 153 | 298 | ||
52 | 97 | 2 | 47 | 3 | 0 | 2 | 1 | 353 | 98 | 203 | 148 | ||
47 | 2 | 97 | 52 | 2 | 1 | 3 | 0 | 248 | 103 | 398 | 53 | ||
97 | 52 | 47 | 2 | 1 | 2 | 0 | 3 | 198 | 253 | 48 | 303 | ||
3 | 46 | 53 | 96 | 0 | 3 | 1 | 2 | 4 | 347 | 154 | 297 | ||
53 | 96 | 3 | 46 | 3 | 0 | 2 | 1 | 354 | 97 | 204 | 147 | ||
46 | 3 | 96 | 53 | 2 | 1 | 3 | 0 | 247 | 104 | 397 | 54 | ||
96 | 53 | 46 | 3 | 1 | 2 | 0 | 3 | 197 | 254 | 47 | 304 | ||
4 | 45 | 54 | 95 | 0 | 3 | 1 | 2 | 5 | 346 | 155 | 296 | ||
54 | 95 | 4 | 45 | 3 | 0 | 2 | 1 | 355 | 96 | 205 | 146 | ||
45 | 4 | 95 | 54 | 2 | 1 | 3 | 0 | 246 | 105 | 396 | 55 | ||
95 | 54 | 45 | 4 | 1 | 2 | 0 | 3 | 196 | 255 | 46 | 305 | ||
5 | 44 | 55 | 94 | 0 | 3 | 1 | 2 | 6 | 345 | 156 | 295 | ||
55 | 94 | 5 | 44 | 3 | 0 | 2 | 1 | 356 | 95 | 206 | 145 | ||
44 | 5 | 94 | 55 | 2 | 1 | 3 | 0 | 245 | 106 | 395 | 56 | ||
94 | 55 | 44 | 5 | 1 | 2 | 0 | 3 | 195 | 256 | 45 | 306 | ||
6 | 43 | 56 | 93 | 0 | 3 | 1 | 2 | 7 | 344 | 157 | 294 | ||
56 | 93 | 6 | 43 | 3 | 0 | 2 | 1 | 357 | 94 | 207 | 144 | ||
43 | 6 | 93 | 56 | 2 | 1 | 3 | 0 | 244 | 107 | 394 | 57 | ||
93 | 56 | 43 | 6 | 1 | 2 | 0 | 3 | 194 | 257 | 44 | 307 | ||
7 | 42 | 57 | 92 | 0 | 3 | 1 | 2 | 8 | 343 | 158 | 293 | ||
57 | 92 | 7 | 42 | 3 | 0 | 2 | 1 | 358 | 93 | 208 | 143 | ||
42 | 7 | 92 | 57 | 2 | 1 | 3 | 0 | 243 | 108 | 393 | 58 | ||
92 | 57 | 42 | 7 | 1 | 2 | 0 | 3 | 193 | 258 | 43 | 308 | ||
8 | 41 | 58 | 91 | 0 | 3 | 1 | 2 | 9 | 342 | 159 | 292 | ||
58 | 91 | 8 | 41 | 3 | 0 | 2 | 1 | 359 | 92 | 209 | 142 | ||
41 | 8 | 91 | 58 | 2 | 1 | 3 | 0 | 242 | 109 | 392 | 59 | ||
91 | 58 | 41 | 8 | 1 | 2 | 0 | 3 | 192 | 259 | 42 | 309 | ||
9 | 40 | 59 | 90 | 0 | 3 | 1 | 2 | 10 | 341 | 160 | 291 | ||
59 | 90 | 9 | 40 | 3 | 0 | 2 | 1 | 360 | 91 | 210 | 141 | ||
40 | 9 | 90 | 59 | 2 | 1 | 3 | 0 | 241 | 110 | 391 | 60 | ||
90 | 59 | 40 | 9 | 1 | 2 | 0 | 3 | 191 | 260 | 41 | 310 | ||
10 | 39 | 60 | 89 | 0 | 3 | 1 | 2 | 11 | 340 | 161 | 290 | ||
60 | 89 | 10 | 39 | 3 | 0 | 2 | 1 | 361 | 90 | 211 | 140 | ||
39 | 10 | 89 | 60 | 2 | 1 | 3 | 0 | 240 | 111 | 390 | 61 | ||
89 | 60 | 39 | 10 | 1 | 2 | 0 | 3 | 190 | 261 | 40 | 311 | ||
11 | 38 | 61 | 88 | 0 | 3 | 1 | 2 | 12 | 339 | 162 | 289 | ||
61 | 88 | 11 | 38 | 3 | 0 | 2 | 1 | 362 | 89 | 212 | 139 | ||
38 | 11 | 88 | 61 | 2 | 1 | 3 | 0 | 239 | 112 | 389 | 62 | ||
88 | 61 | 38 | 11 | 1 | 2 | 0 | 3 | 189 | 262 | 39 | 312 | ||
12 | 37 | 62 | 87 | 0 | 3 | 1 | 2 | 13 | 338 | 163 | 288 | ||
62 | 87 | 12 | 37 | 3 | 0 | 2 | 1 | 363 | 88 | 213 | 138 | ||
37 | 12 | 87 | 62 | 2 | 1 | 3 | 0 | 238 | 113 | 388 | 63 | ||
87 | 62 | 37 | 12 | 1 | 2 | 0 | 3 | 188 | 263 | 38 | 313 | ||
13 | 36 | 63 | 86 | 0 | 3 | 1 | 2 | 14 | 337 | 164 | 287 | ||
63 | 86 | 13 | 36 | 3 | 0 | 2 | 1 | 364 | 87 | 214 | 137 | ||
36 | 13 | 86 | 63 | 2 | 1 | 3 | 0 | 237 | 114 | 387 | 64 | ||
86 | 63 | 36 | 13 | 1 | 2 | 0 | 3 | 187 | 264 | 37 | 314 | ||
14 | 35 | 64 | 85 | 0 | 3 | 1 | 2 | 15 | 336 | 165 | 286 | ||
64 | 85 | 14 | 35 | 3 | 0 | 2 | 1 | 365 | 86 | 215 | 136 | ||
35 | 14 | 85 | 64 | 2 | 1 | 3 | 0 | 236 | 115 | 386 | 65 | ||
85 | 64 | 35 | 14 | 1 | 2 | 0 | 3 | 186 | 265 | 36 | 315 | ||
15 | 34 | 65 | 84 | 0 | 3 | 1 | 2 | 16 | 335 | 166 | 285 | ||
65 | 84 | 15 | 34 | 3 | 0 | 2 | 1 | 366 | 85 | 216 | 135 | ||
34 | 15 | 84 | 65 | 2 | 1 | 3 | 0 | 235 | 116 | 385 | 66 | ||
84 | 65 | 34 | 15 | 1 | 2 | 0 | 3 | 185 | 266 | 35 | 316 | ||
16 | 33 | 66 | 83 | 0 | 3 | 1 | 2 | 17 | 334 | 167 | 284 | ||
66 | 83 | 16 | 33 | 3 | 0 | 2 | 1 | 367 | 84 | 217 | 134 | ||
33 | 16 | 83 | 66 | 2 | 1 | 3 | 0 | 234 | 117 | 384 | 67 | ||
83 | 66 | 33 | 16 | 1 | 2 | 0 | 3 | 184 | 267 | 34 | 317 | ||
17 | 32 | 67 | 82 | 0 | 3 | 1 | 2 | 18 | 333 | 168 | 283 | ||
67 | 82 | 17 | 32 | 3 | 0 | 2 | 1 | 368 | 83 | 218 | 133 | ||
32 | 17 | 82 | 67 | 2 | 1 | 3 | 0 | 233 | 118 | 383 | 68 | ||
82 | 67 | 32 | 17 | 1 | 2 | 0 | 3 | 183 | 268 | 33 | 318 | ||
18 | 31 | 68 | 81 | 0 | 3 | 1 | 2 | 19 | 332 | 169 | 282 | ||
68 | 81 | 18 | 31 | 3 | 0 | 2 | 1 | 369 | 82 | 219 | 132 | ||
31 | 18 | 81 | 68 | 2 | 1 | 3 | 0 | 232 | 119 | 382 | 69 | ||
81 | 68 | 31 | 18 | 1 | 2 | 0 | 3 | 182 | 269 | 32 | 319 | ||
19 | 30 | 69 | 80 | 0 | 3 | 1 | 2 | 20 | 331 | 170 | 281 | ||
69 | 80 | 19 | 30 | 3 | 0 | 2 | 1 | 370 | 81 | 220 | 131 | ||
30 | 19 | 80 | 69 | 2 | 1 | 3 | 0 | 231 | 120 | 381 | 70 | ||
80 | 69 | 30 | 19 | 1 | 2 | 0 | 3 | 181 | 270 | 31 | 320 | ||
20 | 29 | 70 | 79 | 0 | 3 | 1 | 2 | 21 | 330 | 171 | 280 | ||
70 | 79 | 20 | 29 | 3 | 0 | 2 | 1 | 371 | 80 | 221 | 130 | ||
29 | 20 | 79 | 70 | 2 | 1 | 3 | 0 | 230 | 121 | 380 | 71 | ||
79 | 70 | 29 | 20 | 1 | 2 | 0 | 3 | 180 | 271 | 30 | 321 | ||
21 | 28 | 71 | 78 | 0 | 3 | 1 | 2 | 22 | 329 | 172 | 279 | ||
71 | 78 | 21 | 28 | 3 | 0 | 2 | 1 | 372 | 79 | 222 | 129 | ||
28 | 21 | 78 | 71 | 2 | 1 | 3 | 0 | 229 | 122 | 379 | 72 | ||
78 | 71 | 28 | 21 | 1 | 2 | 0 | 3 | 179 | 272 | 29 | 322 | ||
22 | 27 | 72 | 77 | 0 | 3 | 1 | 2 | 23 | 328 | 173 | 278 | ||
72 | 77 | 22 | 27 | 3 | 0 | 2 | 1 | 373 | 78 | 223 | 128 | ||
27 | 22 | 77 | 72 | 2 | 1 | 3 | 0 | 228 | 123 | 378 | 73 | ||
77 | 72 | 27 | 22 | 1 | 2 | 0 | 3 | 178 | 273 | 28 | 323 | ||
23 | 26 | 73 | 76 | 0 | 3 | 1 | 2 | 24 | 327 | 174 | 277 | ||
73 | 76 | 23 | 26 | 3 | 0 | 2 | 1 | 374 | 77 | 224 | 127 | ||
26 | 23 | 76 | 73 | 2 | 1 | 3 | 0 | 227 | 124 | 377 | 74 | ||
76 | 73 | 26 | 23 | 1 | 2 | 0 | 3 | 177 | 274 | 27 | 324 | ||
24 | 25 | 74 | 75 | 0 | 3 | 1 | 2 | 25 | 326 | 175 | 276 | ||
74 | 75 | 24 | 25 | 3 | 0 | 2 | 1 | 375 | 76 | 225 | 126 | ||
25 | 24 | 75 | 74 | 2 | 1 | 3 | 0 | 226 | 125 | 376 | 75 | ||
75 | 74 | 25 | 24 | 1 | 2 | 0 | 3 | 176 | 275 | 26 | 325 |
Put the 25 panmagic 4x4 squares in sequence together
Magic 20x20 square
1 | 350 | 151 | 300 | 2 | 349 | 152 | 299 | 3 | 348 | 153 | 298 | 4 | 347 | 154 | 297 | 5 | 346 | 155 | 296 |
351 | 100 | 201 | 150 | 352 | 99 | 202 | 149 | 353 | 98 | 203 | 148 | 354 | 97 | 204 | 147 | 355 | 96 | 205 | 146 |
250 | 101 | 400 | 51 | 249 | 102 | 399 | 52 | 248 | 103 | 398 | 53 | 247 | 104 | 397 | 54 | 246 | 105 | 396 | 55 |
200 | 251 | 50 | 301 | 199 | 252 | 49 | 302 | 198 | 253 | 48 | 303 | 197 | 254 | 47 | 304 | 196 | 255 | 46 | 305 |
6 | 345 | 156 | 295 | 7 | 344 | 157 | 294 | 8 | 343 | 158 | 293 | 9 | 342 | 159 | 292 | 10 | 341 | 160 | 291 |
356 | 95 | 206 | 145 | 357 | 94 | 207 | 144 | 358 | 93 | 208 | 143 | 359 | 92 | 209 | 142 | 360 | 91 | 210 | 141 |
245 | 106 | 395 | 56 | 244 | 107 | 394 | 57 | 243 | 108 | 393 | 58 | 242 | 109 | 392 | 59 | 241 | 110 | 391 | 60 |
195 | 256 | 45 | 306 | 194 | 257 | 44 | 307 | 193 | 258 | 43 | 308 | 192 | 259 | 42 | 309 | 191 | 260 | 41 | 310 |
11 | 340 | 161 | 290 | 12 | 339 | 162 | 289 | 13 | 338 | 163 | 288 | 14 | 337 | 164 | 287 | 15 | 336 | 165 | 286 |
361 | 90 | 211 | 140 | 362 | 89 | 212 | 139 | 363 | 88 | 213 | 138 | 364 | 87 | 214 | 137 | 365 | 86 | 215 | 136 |
240 | 111 | 390 | 61 | 239 | 112 | 389 | 62 | 238 | 113 | 388 | 63 | 237 | 114 | 387 | 64 | 236 | 115 | 386 | 65 |
190 | 261 | 40 | 311 | 189 | 262 | 39 | 312 | 188 | 263 | 38 | 313 | 187 | 264 | 37 | 314 | 186 | 265 | 36 | 315 |
16 | 335 | 166 | 285 | 17 | 334 | 167 | 284 | 18 | 333 | 168 | 283 | 19 | 332 | 169 | 282 | 20 | 331 | 170 | 281 |
366 | 85 | 216 | 135 | 367 | 84 | 217 | 134 | 368 | 83 | 218 | 133 | 369 | 82 | 219 | 132 | 370 | 81 | 220 | 131 |
235 | 116 | 385 | 66 | 234 | 117 | 384 | 67 | 233 | 118 | 383 | 68 | 232 | 119 | 382 | 69 | 231 | 120 | 381 | 70 |
185 | 266 | 35 | 316 | 184 | 267 | 34 | 317 | 183 | 268 | 33 | 318 | 182 | 269 | 32 | 319 | 181 | 270 | 31 | 320 |
21 | 330 | 171 | 280 | 22 | 329 | 172 | 279 | 23 | 328 | 173 | 278 | 24 | 327 | 174 | 277 | 25 | 326 | 175 | 276 |
371 | 80 | 221 | 130 | 372 | 79 | 222 | 129 | 373 | 78 | 223 | 128 | 374 | 77 | 224 | 127 | 375 | 76 | 225 | 126 |
230 | 121 | 380 | 71 | 229 | 122 | 379 | 72 | 228 | 123 | 378 | 73 | 227 | 124 | 377 | 74 | 226 | 125 | 376 | 75 |
180 | 271 | 30 | 321 | 179 | 272 | 29 | 322 | 178 | 273 | 28 | 323 | 177 | 274 | 27 | 324 | 176 | 275 | 26 | 325 |
The 20x20 magic square is not fully 2x2 compact. Use the Khajuraho method (20x20) to swap numbers.
Most perfect 20x20 magic square
5 | 350 | 151 | 296 | 4 | 349 | 152 | 297 | 3 | 348 | 153 | 298 | 2 | 347 | 154 | 299 | 1 | 346 | 155 | 300 |
351 | 96 | 205 | 150 | 352 | 97 | 204 | 149 | 353 | 98 | 203 | 148 | 354 | 99 | 202 | 147 | 355 | 100 | 201 | 146 |
250 | 105 | 396 | 51 | 249 | 104 | 397 | 52 | 248 | 103 | 398 | 53 | 247 | 102 | 399 | 54 | 246 | 101 | 400 | 55 |
196 | 251 | 50 | 305 | 197 | 252 | 49 | 304 | 198 | 253 | 48 | 303 | 199 | 254 | 47 | 302 | 200 | 255 | 46 | 301 |
10 | 345 | 156 | 291 | 9 | 344 | 157 | 292 | 8 | 343 | 158 | 293 | 7 | 342 | 159 | 294 | 6 | 341 | 160 | 295 |
356 | 91 | 210 | 145 | 357 | 92 | 209 | 144 | 358 | 93 | 208 | 143 | 359 | 94 | 207 | 142 | 360 | 95 | 206 | 141 |
245 | 110 | 391 | 56 | 244 | 109 | 392 | 57 | 243 | 108 | 393 | 58 | 242 | 107 | 394 | 59 | 241 | 106 | 395 | 60 |
191 | 256 | 45 | 310 | 192 | 257 | 44 | 309 | 193 | 258 | 43 | 308 | 194 | 259 | 42 | 307 | 195 | 260 | 41 | 306 |
15 | 340 | 161 | 286 | 14 | 339 | 162 | 287 | 13 | 338 | 163 | 288 | 12 | 337 | 164 | 289 | 11 | 336 | 165 | 290 |
361 | 86 | 215 | 140 | 362 | 87 | 214 | 139 | 363 | 88 | 213 | 138 | 364 | 89 | 212 | 137 | 365 | 90 | 211 | 136 |
240 | 115 | 386 | 61 | 239 | 114 | 387 | 62 | 238 | 113 | 388 | 63 | 237 | 112 | 389 | 64 | 236 | 111 | 390 | 65 |
186 | 261 | 40 | 315 | 187 | 262 | 39 | 314 | 188 | 263 | 38 | 313 | 189 | 264 | 37 | 312 | 190 | 265 | 36 | 311 |
20 | 335 | 166 | 281 | 19 | 334 | 167 | 282 | 18 | 333 | 168 | 283 | 17 | 332 | 169 | 284 | 16 | 331 | 170 | 285 |
366 | 81 | 220 | 135 | 367 | 82 | 219 | 134 | 368 | 83 | 218 | 133 | 369 | 84 | 217 | 132 | 370 | 85 | 216 | 131 |
235 | 120 | 381 | 66 | 234 | 119 | 382 | 67 | 233 | 118 | 383 | 68 | 232 | 117 | 384 | 69 | 231 | 116 | 385 | 70 |
181 | 266 | 35 | 320 | 182 | 267 | 34 | 319 | 183 | 268 | 33 | 318 | 184 | 269 | 32 | 317 | 185 | 270 | 31 | 316 |
25 | 330 | 171 | 276 | 24 | 329 | 172 | 277 | 23 | 328 | 173 | 278 | 22 | 327 | 174 | 279 | 21 | 326 | 175 | 280 |
371 | 76 | 225 | 130 | 372 | 77 | 224 | 129 | 373 | 78 | 223 | 128 | 374 | 79 | 222 | 127 | 375 | 80 | 221 | 126 |
230 | 125 | 376 | 71 | 229 | 124 | 377 | 72 | 228 | 123 | 378 | 73 | 227 | 122 | 379 | 74 | 226 | 121 | 380 | 75 |
176 | 271 | 30 | 325 | 177 | 272 | 29 | 324 | 178 | 273 | 28 | 323 | 179 | 274 | 27 | 322 | 180 | 275 | 26 | 321 |
This 20x20 magic square is panmagic, (fully) 2x2 compact and each 1/5 row/column/ diagonal gives 1/5 of the magic sum.
I have used composite method, proportional (1) to construct
8x8, 9x9, 12x12a, 12x12b, 15x15a, 15x15b, 16x16a, 16x16b, 18x18, 20x20a, 20x20b, 21x21a, 21x21b, 24x24a, 24x24b, 24x24c, 27x27a, 27x27b, 28x28a, 28x28b, 30x30a, 30x30b,32x32a, 32x32b and 32x32c