The 21x21 magic square is odd but also a multiple of 3. You can use the shift method to construct a 21x21 magic square but with boundary conditions. Take as first row of the first and/or
second grid 0-1-2-3-4-5-6-7- 8-9-10-11-12-13-14-15-16-17-18-19-20-21and you get only a semi-magic 21x21 square. Take as first row of the first and/or second
grid 0-2-1-3-4-5-8-7-6-11-10-9-13-12-14 and you get a panmagic 21x21 square.
The row 0-2-1-4-3-5-8-7-6-9-10-11-13-12-14-17-16-15-19-20-18 leads to a valid 21x21 panmagic square, because [yellow marked]
0+4+8+9+13+17+19 = [blue marked] 2+3+7+10+12+16+20 = [pink marked] 1+5+6+11+14+15+18 = 70, that is 1/3 of (0+1+2+3+4+5+6+7+8 +9+10+11+12+13+14+ 15+16+17+18+19+20=) 210.
Take 1x number from first grid (shift 2 to the left) +1
0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 |
1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 |
3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 |
8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 |
6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 |
10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 |
13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 |
14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 |
16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 |
19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 |
18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 |
2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 |
4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 |
5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 |
7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 |
9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 |
11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 |
12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 |
17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 |
15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 |
20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 |
+ 21x number from second grid (shift 2 to the right)
0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 |
20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 |
15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 |
17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 |
12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 |
11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 |
9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 |
7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 |
5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 |
4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 |
2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 |
18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 |
19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 |
16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 |
14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 |
13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 |
10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 |
6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 | 8 | 7 |
8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 | 3 | 5 |
3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 | 1 | 4 |
1 | 4 | 3 | 5 | 8 | 7 | 6 | 9 | 10 | 11 | 13 | 12 | 14 | 17 | 16 | 15 | 19 | 20 | 18 | 0 | 2 |
= panmagic 21x21 square
1 | 45 | 23 | 89 | 67 | 111 | 177 | 155 | 133 | 199 | 221 | 243 | 287 | 265 | 309 | 375 | 353 | 331 | 419 | 441 | 397 |
42 | 103 | 64 | 108 | 170 | 152 | 130 | 195 | 219 | 239 | 280 | 262 | 305 | 369 | 350 | 328 | 414 | 438 | 395 | 16 | 62 |
79 | 125 | 189 | 166 | 127 | 192 | 212 | 236 | 277 | 258 | 303 | 365 | 343 | 325 | 410 | 432 | 392 | 13 | 57 | 39 | 101 |
186 | 164 | 142 | 209 | 231 | 250 | 274 | 255 | 296 | 362 | 340 | 321 | 408 | 428 | 385 | 10 | 53 | 33 | 98 | 76 | 120 |
139 | 204 | 228 | 248 | 289 | 272 | 315 | 376 | 337 | 318 | 401 | 425 | 382 | 6 | 51 | 29 | 91 | 73 | 116 | 180 | 161 |
222 | 245 | 286 | 267 | 312 | 374 | 352 | 335 | 420 | 439 | 379 | 3 | 44 | 26 | 88 | 69 | 114 | 176 | 154 | 136 | 200 |
283 | 263 | 306 | 371 | 349 | 330 | 417 | 437 | 394 | 20 | 63 | 40 | 85 | 66 | 107 | 173 | 151 | 132 | 198 | 218 | 238 |
302 | 364 | 346 | 326 | 411 | 434 | 391 | 15 | 60 | 38 | 100 | 83 | 126 | 187 | 148 | 129 | 191 | 215 | 235 | 279 | 261 |
342 | 324 | 407 | 427 | 388 | 11 | 54 | 35 | 97 | 78 | 123 | 185 | 163 | 146 | 210 | 229 | 232 | 276 | 254 | 299 | 361 |
404 | 424 | 384 | 9 | 50 | 28 | 94 | 74 | 117 | 182 | 160 | 141 | 207 | 227 | 247 | 293 | 273 | 313 | 358 | 339 | 317 |
381 | 2 | 47 | 25 | 90 | 72 | 113 | 175 | 157 | 137 | 201 | 224 | 244 | 288 | 270 | 311 | 373 | 356 | 336 | 418 | 421 |
61 | 22 | 87 | 65 | 110 | 172 | 153 | 135 | 197 | 217 | 241 | 284 | 264 | 308 | 370 | 351 | 333 | 416 | 436 | 398 | 21 |
104 | 84 | 124 | 169 | 150 | 128 | 194 | 214 | 237 | 282 | 260 | 301 | 367 | 347 | 327 | 413 | 433 | 393 | 18 | 59 | 37 |
122 | 184 | 167 | 147 | 208 | 211 | 234 | 275 | 257 | 298 | 363 | 345 | 323 | 406 | 430 | 389 | 12 | 56 | 34 | 99 | 81 |
162 | 144 | 206 | 226 | 251 | 294 | 271 | 295 | 360 | 338 | 320 | 403 | 426 | 387 | 8 | 49 | 31 | 95 | 75 | 119 | 181 |
203 | 223 | 246 | 291 | 269 | 310 | 377 | 357 | 334 | 400 | 423 | 380 | 5 | 46 | 27 | 93 | 71 | 112 | 178 | 158 | 138 |
242 | 285 | 266 | 307 | 372 | 354 | 332 | 415 | 440 | 399 | 19 | 43 | 24 | 86 | 68 | 109 | 174 | 156 | 134 | 196 | 220 |
259 | 304 | 368 | 348 | 329 | 412 | 435 | 396 | 17 | 58 | 41 | 105 | 82 | 106 | 171 | 149 | 131 | 193 | 216 | 240 | 281 |
366 | 344 | 322 | 409 | 431 | 390 | 14 | 55 | 36 | 102 | 80 | 121 | 188 | 168 | 145 | 190 | 213 | 233 | 278 | 256 | 300 |
319 | 405 | 429 | 386 | 7 | 52 | 32 | 96 | 77 | 118 | 183 | 165 | 143 | 205 | 230 | 252 | 292 | 253 | 297 | 359 | 341 |
422 | 383 | 4 | 48 | 30 | 92 | 70 | 115 | 179 | 159 | 140 | 202 | 225 | 249 | 290 | 268 | 314 | 378 | 355 | 316 | 402 |
Use the shift method to construct magic squares of odd order from 5x5 to infinity.
See 5x5, 7x7, 9x9 (1), 9x9 (2), 11x11, 13x13, 15x15 (1), 15x15 (2), 17x17, 19x19, 21x21 (1), 21x21 (2), 23x23, 25x25, 27x27 (1), 27x27 (2), 29x29 and 31x31