See explanation about basic key method (ultra magic) on the webpage of the 12x12 magic square. See below how you can use basic key method (ultra magic) to construct a 24x24 ultra magic square:
Take 1x number from first grid
1 | 12 | 14 | 23 | 3 | 10 | 16 | 21 | 5 | 8 | 18 | 19 | 19 | 18 | 8 | 5 | 21 | 16 | 10 | 3 | 23 | 14 | 12 | 1 |
24 | 13 | 11 | 2 | 22 | 15 | 9 | 4 | 20 | 17 | 7 | 6 | 6 | 7 | 17 | 20 | 4 | 9 | 15 | 22 | 2 | 11 | 13 | 24 |
1 | 12 | 14 | 23 | 3 | 10 | 16 | 21 | 5 | 8 | 18 | 19 | 19 | 18 | 8 | 5 | 21 | 16 | 10 | 3 | 23 | 14 | 12 | 1 |
24 | 13 | 11 | 2 | 22 | 15 | 9 | 4 | 20 | 17 | 7 | 6 | 6 | 7 | 17 | 20 | 4 | 9 | 15 | 22 | 2 | 11 | 13 | 24 |
1 | 12 | 14 | 23 | 3 | 10 | 16 | 21 | 5 | 8 | 18 | 19 | 19 | 18 | 8 | 5 | 21 | 16 | 10 | 3 | 23 | 14 | 12 | 1 |
24 | 13 | 11 | 2 | 22 | 15 | 9 | 4 | 20 | 17 | 7 | 6 | 6 | 7 | 17 | 20 | 4 | 9 | 15 | 22 | 2 | 11 | 13 | 24 |
1 | 12 | 14 | 23 | 3 | 10 | 16 | 21 | 5 | 8 | 18 | 19 | 19 | 18 | 8 | 5 | 21 | 16 | 10 | 3 | 23 | 14 | 12 | 1 |
24 | 13 | 11 | 2 | 22 | 15 | 9 | 4 | 20 | 17 | 7 | 6 | 6 | 7 | 17 | 20 | 4 | 9 | 15 | 22 | 2 | 11 | 13 | 24 |
1 | 12 | 14 | 23 | 3 | 10 | 16 | 21 | 5 | 8 | 18 | 19 | 19 | 18 | 8 | 5 | 21 | 16 | 10 | 3 | 23 | 14 | 12 | 1 |
24 | 13 | 11 | 2 | 22 | 15 | 9 | 4 | 20 | 17 | 7 | 6 | 6 | 7 | 17 | 20 | 4 | 9 | 15 | 22 | 2 | 11 | 13 | 24 |
1 | 12 | 14 | 23 | 3 | 10 | 16 | 21 | 5 | 8 | 18 | 19 | 19 | 18 | 8 | 5 | 21 | 16 | 10 | 3 | 23 | 14 | 12 | 1 |
24 | 13 | 11 | 2 | 22 | 15 | 9 | 4 | 20 | 17 | 7 | 6 | 6 | 7 | 17 | 20 | 4 | 9 | 15 | 22 | 2 | 11 | 13 | 24 |
1 | 12 | 14 | 23 | 3 | 10 | 16 | 21 | 5 | 8 | 18 | 19 | 19 | 18 | 8 | 5 | 21 | 16 | 10 | 3 | 23 | 14 | 12 | 1 |
24 | 13 | 11 | 2 | 22 | 15 | 9 | 4 | 20 | 17 | 7 | 6 | 6 | 7 | 17 | 20 | 4 | 9 | 15 | 22 | 2 | 11 | 13 | 24 |
1 | 12 | 14 | 23 | 3 | 10 | 16 | 21 | 5 | 8 | 18 | 19 | 19 | 18 | 8 | 5 | 21 | 16 | 10 | 3 | 23 | 14 | 12 | 1 |
24 | 13 | 11 | 2 | 22 | 15 | 9 | 4 | 20 | 17 | 7 | 6 | 6 | 7 | 17 | 20 | 4 | 9 | 15 | 22 | 2 | 11 | 13 | 24 |
1 | 12 | 14 | 23 | 3 | 10 | 16 | 21 | 5 | 8 | 18 | 19 | 19 | 18 | 8 | 5 | 21 | 16 | 10 | 3 | 23 | 14 | 12 | 1 |
24 | 13 | 11 | 2 | 22 | 15 | 9 | 4 | 20 | 17 | 7 | 6 | 6 | 7 | 17 | 20 | 4 | 9 | 15 | 22 | 2 | 11 | 13 | 24 |
1 | 12 | 14 | 23 | 3 | 10 | 16 | 21 | 5 | 8 | 18 | 19 | 19 | 18 | 8 | 5 | 21 | 16 | 10 | 3 | 23 | 14 | 12 | 1 |
24 | 13 | 11 | 2 | 22 | 15 | 9 | 4 | 20 | 17 | 7 | 6 | 6 | 7 | 17 | 20 | 4 | 9 | 15 | 22 | 2 | 11 | 13 | 24 |
1 | 12 | 14 | 23 | 3 | 10 | 16 | 21 | 5 | 8 | 18 | 19 | 19 | 18 | 8 | 5 | 21 | 16 | 10 | 3 | 23 | 14 | 12 | 1 |
24 | 13 | 11 | 2 | 22 | 15 | 9 | 4 | 20 | 17 | 7 | 6 | 6 | 7 | 17 | 20 | 4 | 9 | 15 | 22 | 2 | 11 | 13 | 24 |
1 | 12 | 14 | 23 | 3 | 10 | 16 | 21 | 5 | 8 | 18 | 19 | 19 | 18 | 8 | 5 | 21 | 16 | 10 | 3 | 23 | 14 | 12 | 1 |
24 | 13 | 11 | 2 | 22 | 15 | 9 | 4 | 20 | 17 | 7 | 6 | 6 | 7 | 17 | 20 | 4 | 9 | 15 | 22 | 2 | 11 | 13 | 24 |
+ 24x [number -/- 1] from second grid (= reflection of the first grid)
1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 |
12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 |
14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 |
23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 |
3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 |
10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 |
16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 |
21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 |
5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 |
8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 |
18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 |
19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 |
19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 | 19 | 6 |
18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 | 18 | 7 |
8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 | 8 | 17 |
5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 | 5 | 20 |
21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 | 21 | 4 |
16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 | 16 | 9 |
10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 | 10 | 15 |
3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 | 3 | 22 |
23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 | 23 | 2 |
14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 | 14 | 11 |
12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 | 12 | 13 |
1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 | 1 | 24 |
= 24x24 ultra magic square
1 | 564 | 14 | 575 | 3 | 562 | 16 | 573 | 5 | 560 | 18 | 571 | 19 | 570 | 8 | 557 | 21 | 568 | 10 | 555 | 23 | 566 | 12 | 553 |
288 | 301 | 275 | 290 | 286 | 303 | 273 | 292 | 284 | 305 | 271 | 294 | 270 | 295 | 281 | 308 | 268 | 297 | 279 | 310 | 266 | 299 | 277 | 312 |
313 | 252 | 326 | 263 | 315 | 250 | 328 | 261 | 317 | 248 | 330 | 259 | 331 | 258 | 320 | 245 | 333 | 256 | 322 | 243 | 335 | 254 | 324 | 241 |
552 | 37 | 539 | 26 | 550 | 39 | 537 | 28 | 548 | 41 | 535 | 30 | 534 | 31 | 545 | 44 | 532 | 33 | 543 | 46 | 530 | 35 | 541 | 48 |
49 | 516 | 62 | 527 | 51 | 514 | 64 | 525 | 53 | 512 | 66 | 523 | 67 | 522 | 56 | 509 | 69 | 520 | 58 | 507 | 71 | 518 | 60 | 505 |
240 | 349 | 227 | 338 | 238 | 351 | 225 | 340 | 236 | 353 | 223 | 342 | 222 | 343 | 233 | 356 | 220 | 345 | 231 | 358 | 218 | 347 | 229 | 360 |
361 | 204 | 374 | 215 | 363 | 202 | 376 | 213 | 365 | 200 | 378 | 211 | 379 | 210 | 368 | 197 | 381 | 208 | 370 | 195 | 383 | 206 | 372 | 193 |
504 | 85 | 491 | 74 | 502 | 87 | 489 | 76 | 500 | 89 | 487 | 78 | 486 | 79 | 497 | 92 | 484 | 81 | 495 | 94 | 482 | 83 | 493 | 96 |
97 | 468 | 110 | 479 | 99 | 466 | 112 | 477 | 101 | 464 | 114 | 475 | 115 | 474 | 104 | 461 | 117 | 472 | 106 | 459 | 119 | 470 | 108 | 457 |
192 | 397 | 179 | 386 | 190 | 399 | 177 | 388 | 188 | 401 | 175 | 390 | 174 | 391 | 185 | 404 | 172 | 393 | 183 | 406 | 170 | 395 | 181 | 408 |
409 | 156 | 422 | 167 | 411 | 154 | 424 | 165 | 413 | 152 | 426 | 163 | 427 | 162 | 416 | 149 | 429 | 160 | 418 | 147 | 431 | 158 | 420 | 145 |
456 | 133 | 443 | 122 | 454 | 135 | 441 | 124 | 452 | 137 | 439 | 126 | 438 | 127 | 449 | 140 | 436 | 129 | 447 | 142 | 434 | 131 | 445 | 144 |
433 | 132 | 446 | 143 | 435 | 130 | 448 | 141 | 437 | 128 | 450 | 139 | 451 | 138 | 440 | 125 | 453 | 136 | 442 | 123 | 455 | 134 | 444 | 121 |
432 | 157 | 419 | 146 | 430 | 159 | 417 | 148 | 428 | 161 | 415 | 150 | 414 | 151 | 425 | 164 | 412 | 153 | 423 | 166 | 410 | 155 | 421 | 168 |
169 | 396 | 182 | 407 | 171 | 394 | 184 | 405 | 173 | 392 | 186 | 403 | 187 | 402 | 176 | 389 | 189 | 400 | 178 | 387 | 191 | 398 | 180 | 385 |
120 | 469 | 107 | 458 | 118 | 471 | 105 | 460 | 116 | 473 | 103 | 462 | 102 | 463 | 113 | 476 | 100 | 465 | 111 | 478 | 98 | 467 | 109 | 480 |
481 | 84 | 494 | 95 | 483 | 82 | 496 | 93 | 485 | 80 | 498 | 91 | 499 | 90 | 488 | 77 | 501 | 88 | 490 | 75 | 503 | 86 | 492 | 73 |
384 | 205 | 371 | 194 | 382 | 207 | 369 | 196 | 380 | 209 | 367 | 198 | 366 | 199 | 377 | 212 | 364 | 201 | 375 | 214 | 362 | 203 | 373 | 216 |
217 | 348 | 230 | 359 | 219 | 346 | 232 | 357 | 221 | 344 | 234 | 355 | 235 | 354 | 224 | 341 | 237 | 352 | 226 | 339 | 239 | 350 | 228 | 337 |
72 | 517 | 59 | 506 | 70 | 519 | 57 | 508 | 68 | 521 | 55 | 510 | 54 | 511 | 65 | 524 | 52 | 513 | 63 | 526 | 50 | 515 | 61 | 528 |
529 | 36 | 542 | 47 | 531 | 34 | 544 | 45 | 533 | 32 | 546 | 43 | 547 | 42 | 536 | 29 | 549 | 40 | 538 | 27 | 551 | 38 | 540 | 25 |
336 | 253 | 323 | 242 | 334 | 255 | 321 | 244 | 332 | 257 | 319 | 246 | 318 | 247 | 329 | 260 | 316 | 249 | 327 | 262 | 314 | 251 | 325 | 264 |
265 | 300 | 278 | 311 | 267 | 298 | 280 | 309 | 269 | 296 | 282 | 307 | 283 | 306 | 272 | 293 | 285 | 304 | 274 | 291 | 287 | 302 | 276 | 289 |
24 | 565 | 11 | 554 | 22 | 567 | 9 | 556 | 20 | 569 | 7 | 558 | 6 | 559 | 17 | 572 | 4 | 561 | 15 | 574 | 2 | 563 | 13 | 576 |
This 24x24 magic square is panmagic, 2x2 compact, symmetric and each 1/6 row/column gives 1/6 of the magic sum.
You can use this key to construct magic squares which are a multiple of 4 from 8x8 to infinity. See 8x8, 12x12, 16x16, 20x20, 24x24, 28x28 and 32x32