See for detailed explanation, webpage pan 4x4 in 6x6
Take a most perfect 24x24 magic square and add 50 to all numbers to get the 24x24 inlay and construct the 26x26 border.
The final result is:
Most perfect 24x24 in 26x26 magic square
42 |
2 |
10 |
14 |
16 |
18 |
21 |
25 |
30 |
35 |
37 |
47 |
672 |
671 |
668 |
664 |
662 |
658 |
655 |
643 |
639 |
636 |
633 |
632 |
628 |
43 |
631 |
51 |
614 |
64 |
625 |
53 |
612 |
66 |
623 |
55 |
610 |
68 |
621 |
69 |
620 |
58 |
607 |
71 |
618 |
60 |
605 |
73 |
616 |
62 |
603 |
46 |
638 |
338 |
351 |
325 |
340 |
336 |
353 |
323 |
342 |
334 |
355 |
321 |
344 |
320 |
345 |
331 |
358 |
318 |
347 |
329 |
360 |
316 |
349 |
327 |
362 |
39 |
641 |
363 |
302 |
376 |
313 |
365 |
300 |
378 |
311 |
367 |
298 |
380 |
309 |
381 |
308 |
370 |
295 |
383 |
306 |
372 |
293 |
385 |
304 |
374 |
291 |
36 |
646 |
602 |
87 |
589 |
76 |
600 |
89 |
587 |
78 |
598 |
91 |
585 |
80 |
584 |
81 |
595 |
94 |
582 |
83 |
593 |
96 |
580 |
85 |
591 |
98 |
31 |
648 |
99 |
566 |
112 |
577 |
101 |
564 |
114 |
575 |
103 |
562 |
116 |
573 |
117 |
572 |
106 |
559 |
119 |
570 |
108 |
557 |
121 |
568 |
110 |
555 |
29 |
650 |
290 |
399 |
277 |
388 |
288 |
401 |
275 |
390 |
286 |
403 |
273 |
392 |
272 |
393 |
283 |
406 |
270 |
395 |
281 |
408 |
268 |
397 |
279 |
410 |
27 |
651 |
411 |
254 |
424 |
265 |
413 |
252 |
426 |
263 |
415 |
250 |
428 |
261 |
429 |
260 |
418 |
247 |
431 |
258 |
420 |
245 |
433 |
256 |
422 |
243 |
26 |
653 |
554 |
135 |
541 |
124 |
552 |
137 |
539 |
126 |
550 |
139 |
537 |
128 |
536 |
129 |
547 |
142 |
534 |
131 |
545 |
144 |
532 |
133 |
543 |
146 |
24 |
660 |
147 |
518 |
160 |
529 |
149 |
516 |
162 |
527 |
151 |
514 |
164 |
525 |
165 |
524 |
154 |
511 |
167 |
522 |
156 |
509 |
169 |
520 |
158 |
507 |
17 |
666 |
242 |
447 |
229 |
436 |
240 |
449 |
227 |
438 |
238 |
451 |
225 |
440 |
224 |
441 |
235 |
454 |
222 |
443 |
233 |
456 |
220 |
445 |
231 |
458 |
11 |
670 |
459 |
206 |
472 |
217 |
461 |
204 |
474 |
215 |
463 |
202 |
476 |
213 |
477 |
212 |
466 |
199 |
479 |
210 |
468 |
197 |
481 |
208 |
470 |
195 |
7 |
673 |
506 |
183 |
493 |
172 |
504 |
185 |
491 |
174 |
502 |
187 |
489 |
176 |
488 |
177 |
499 |
190 |
486 |
179 |
497 |
192 |
484 |
181 |
495 |
194 |
4 |
1 |
483 |
182 |
496 |
193 |
485 |
180 |
498 |
191 |
487 |
178 |
500 |
189 |
501 |
188 |
490 |
175 |
503 |
186 |
492 |
173 |
505 |
184 |
494 |
171 |
676 |
3 |
482 |
207 |
469 |
196 |
480 |
209 |
467 |
198 |
478 |
211 |
465 |
200 |
464 |
201 |
475 |
214 |
462 |
203 |
473 |
216 |
460 |
205 |
471 |
218 |
674 |
8 |
219 |
446 |
232 |
457 |
221 |
444 |
234 |
455 |
223 |
442 |
236 |
453 |
237 |
452 |
226 |
439 |
239 |
450 |
228 |
437 |
241 |
448 |
230 |
435 |
669 |
12 |
170 |
519 |
157 |
508 |
168 |
521 |
155 |
510 |
166 |
523 |
153 |
512 |
152 |
513 |
163 |
526 |
150 |
515 |
161 |
528 |
148 |
517 |
159 |
530 |
665 |
20 |
531 |
134 |
544 |
145 |
533 |
132 |
546 |
143 |
535 |
130 |
548 |
141 |
549 |
140 |
538 |
127 |
551 |
138 |
540 |
125 |
553 |
136 |
542 |
123 |
657 |
23 |
434 |
255 |
421 |
244 |
432 |
257 |
419 |
246 |
430 |
259 |
417 |
248 |
416 |
249 |
427 |
262 |
414 |
251 |
425 |
264 |
412 |
253 |
423 |
266 |
654 |
28 |
267 |
398 |
280 |
409 |
269 |
396 |
282 |
407 |
271 |
394 |
284 |
405 |
285 |
404 |
274 |
391 |
287 |
402 |
276 |
389 |
289 |
400 |
278 |
387 |
649 |
32 |
122 |
567 |
109 |
556 |
120 |
569 |
107 |
558 |
118 |
571 |
105 |
560 |
104 |
561 |
115 |
574 |
102 |
563 |
113 |
576 |
100 |
565 |
111 |
578 |
645 |
33 |
579 |
86 |
592 |
97 |
581 |
84 |
594 |
95 |
583 |
82 |
596 |
93 |
597 |
92 |
586 |
79 |
599 |
90 |
588 |
77 |
601 |
88 |
590 |
75 |
644 |
40 |
386 |
303 |
373 |
292 |
384 |
305 |
371 |
294 |
382 |
307 |
369 |
296 |
368 |
297 |
379 |
310 |
366 |
299 |
377 |
312 |
364 |
301 |
375 |
314 |
637 |
48 |
315 |
350 |
328 |
361 |
317 |
348 |
330 |
359 |
319 |
346 |
332 |
357 |
333 |
356 |
322 |
343 |
335 |
354 |
324 |
341 |
337 |
352 |
326 |
339 |
629 |
50 |
74 |
615 |
61 |
604 |
72 |
617 |
59 |
606 |
70 |
619 |
57 |
608 |
56 |
609 |
67 |
622 |
54 |
611 |
65 |
624 |
52 |
613 |
63 |
626 |
627 |
634 |
675 |
667 |
663 |
661 |
659 |
656 |
652 |
647 |
642 |
640 |
630 |
5 |
6 |
9 |
13 |
15 |
19 |
22 |
34 |
38 |
41 |
44 |
45 |
49 |
635 |
Use this method to construct inlaid magic squares of even order. See 6x6, 8x8, 10x10, 12x12, 14x14, 16x16, 18x18, 20x20, 22x22, 24x24, 26x26, 28x28, 30x30 & 32x32