Use a simple key to construct a 8x8 Franklin panmagic square. Notify that the second grid is the first grid rotated by a quarter to the left.
1x number + 8x [number -/- 1] = 8x8 Franklin panmagic square
1 |
2 |
8 |
7 |
3 |
4 |
6 |
5 |
5 |
4 |
5 |
4 |
5 |
4 |
5 |
4 |
33 |
26 |
40 |
31 |
35 |
28 |
38 |
29 |
||||
8 |
7 |
1 |
2 |
6 |
5 |
3 |
4 |
6 |
3 |
6 |
3 |
6 |
3 |
6 |
3 |
48 |
23 |
41 |
18 |
46 |
21 |
43 |
20 |
||||
1 |
2 |
8 |
7 |
3 |
4 |
6 |
5 |
4 |
5 |
4 |
5 |
4 |
5 |
4 |
5 |
25 |
34 |
32 |
39 |
27 |
36 |
30 |
37 |
||||
8 |
7 |
1 |
2 |
6 |
5 |
3 |
4 |
3 |
6 |
3 |
6 |
3 |
6 |
3 |
6 |
24 |
47 |
17 |
42 |
22 |
45 |
19 |
44 |
||||
1 |
2 |
8 |
7 |
3 |
4 |
6 |
5 |
7 |
2 |
7 |
2 |
7 |
2 |
7 |
2 |
49 |
10 |
56 |
15 |
51 |
12 |
54 |
13 |
||||
8 |
7 |
1 |
2 |
6 |
5 |
3 |
4 |
8 |
1 |
8 |
1 |
8 |
1 |
8 |
1 |
64 |
7 |
57 |
2 |
62 |
5 |
59 |
4 |
||||
1 |
2 |
8 |
7 |
3 |
4 |
6 |
5 |
2 |
7 |
2 |
7 |
2 |
7 |
2 |
7 |
9 |
50 |
16 |
55 |
11 |
52 |
14 |
53 |
||||
8 |
7 |
1 |
2 |
6 |
5 |
3 |
4 |
1 |
8 |
1 |
8 |
1 |
8 |
1 |
8 |
8 |
63 |
1 |
58 |
6 |
61 |
3 |
60 |
Use this method to construct most perfect magic squares of order is multiple of 4 from 4x4 to infinity. See 4x4, 8x8, 12x12, 16x16, 20x20, 24x24, 28x28, 32x32