See On the website of Harvey Heinz a bimagic 9x9 square of John Hendricks:
http://www.magic-squares.net/multimagic.htm
A bimagic square is a simple magic square, but also if you fill in the
squares of the numbers (= number x number), you get a valid (impure) magic square.
The bimagic 9x9 square of John Hendricks consist of 4 regular ternary grids. You can put the grids in random order and you can swap the numbers 0,
1 and 2 in each grid to get more possibilities:
0 |
2 |
0 |
0 |
0 |
1 |
0 |
2 |
|||
1 |
0 |
1 |
2 |
1 |
2 |
1 |
1 |
|||
2 |
1 |
2 |
1 |
2 |
0 |
2 |
0 |
1x number +1 1x number +1 | |||||||||||||||||||
0 |
2 |
1 |
2 |
1 |
0 |
1 |
0 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
||
1 |
0 |
2 |
0 |
2 |
1 |
2 |
1 |
0 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
||
2 |
1 |
0 |
1 |
0 |
2 |
0 |
2 |
1 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
||
0 |
2 |
1 |
2 |
1 |
0 |
1 |
0 |
2 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
||
1 |
0 |
2 |
0 |
2 |
1 |
2 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
||
2 |
1 |
0 |
1 |
0 |
2 |
0 |
2 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
||
0 |
2 |
1 |
2 |
1 |
0 |
1 |
0 |
2 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
||
1 |
0 |
2 |
0 |
2 |
1 |
2 |
1 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
||
2 |
1 |
0 |
1 |
0 |
2 |
0 |
2 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
||
+ 3x number + 3x number |
|||||||||||||||||||
2 |
1 |
0 |
0 |
2 |
1 |
1 |
0 |
2 |
0 |
1 |
2 |
1 |
2 |
0 |
2 |
0 |
1 |
||
2 |
1 |
0 |
0 |
2 |
1 |
1 |
0 |
2 |
2 |
0 |
1 |
0 |
1 |
2 |
1 |
2 |
0 |
||
2 |
1 |
0 |
0 |
2 |
1 |
1 |
0 |
2 |
1 |
2 |
0 |
2 |
0 |
1 |
0 |
1 |
2 |
||
1 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
1 |
0 |
1 |
2 |
1 |
2 |
0 |
2 |
0 |
1 |
||
1 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
1 |
2 |
0 |
1 |
0 |
1 |
2 |
1 |
2 |
0 |
||
1 |
0 |
2 |
2 |
1 |
0 |
0 |
2 |
1 |
1 |
2 |
0 |
2 |
0 |
1 |
0 |
1 |
2 |
||
0 |
2 |
1 |
1 |
0 |
2 |
2 |
1 |
0 |
0 |
1 |
2 |
1 |
2 |
0 |
2 |
0 |
1 |
||
0 |
2 |
1 |
1 |
0 |
2 |
2 |
1 |
0 |
2 |
0 |
1 |
0 |
1 |
2 |
1 |
2 |
0 |
||
0 |
2 |
1 |
1 |
0 |
2 |
2 |
1 |
0 |
1 |
2 |
0 |
2 |
0 |
1 |
0 |
1 |
2 |
||
+ 9x number + 9x number |
|||||||||||||||||||
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
||
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
||
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
||
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
||
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
||
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
||
2 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
0 |
1 |
2 |
0 |
1 |
2 |
0 |
1 |
2 |
||
+ 27x number + 27x number |
|||||||||||||||||||
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
0 |
1 |
2 |
2 |
0 |
1 |
1 |
2 |
0 |
||
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
0 |
1 |
2 |
2 |
0 |
1 |
1 |
2 |
0 |
||
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
2 |
2 |
0 |
1 |
1 |
2 |
0 |
||
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
2 |
0 |
0 |
1 |
2 |
2 |
0 |
1 |
||
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
1 |
2 |
0 |
0 |
1 |
2 |
2 |
0 |
1 |
||
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
1 |
2 |
0 |
0 |
1 |
2 |
2 |
0 |
1 |
||
0 |
0 |
0 |
1 |
1 |
1 |
2 |
2 |
2 |
2 |
0 |
1 |
1 |
2 |
0 |
0 |
1 |
2 |
||
2 |
2 |
2 |
0 |
0 |
0 |
1 |
1 |
1 |
2 |
0 |
1 |
1 |
2 |
0 |
0 |
1 |
2 |
||
1 |
1 |
1 |
2 |
2 |
2 |
0 |
0 |
0 |
2 |
0 |
1 |
1 |
2 |
0 |
0 |
1 |
2 |
||
= bimagic 9x9 square = bimagic 9x9 square |
|||||||||||||||||||
43 |
51 |
29 |
66 |
80 |
58 |
14 |
19 |
9 |
19 |
31 |
70 |
77 |
8 |
38 |
54 |
57 |
15 |
||
26 |
4 |
12 |
46 |
36 |
41 |
78 |
56 |
70 |
9 |
39 |
78 |
55 |
13 |
52 |
32 |
71 |
20 |
||
63 |
68 |
73 |
2 |
16 |
24 |
31 |
39 |
53 |
14 |
53 |
56 |
72 |
21 |
33 |
37 |
76 |
7 |
||
76 |
57 |
71 |
27 |
5 |
10 |
47 |
34 |
42 |
29 |
68 |
26 |
6 |
45 |
75 |
61 |
10 |
49 |
||
32 |
37 |
54 |
61 |
69 |
74 |
3 |
17 |
22 |
43 |
73 |
4 |
11 |
50 |
62 |
69 |
27 |
30 |
||
15 |
20 |
7 |
44 |
49 |
30 |
64 |
81 |
59 |
51 |
63 |
12 |
25 |
28 |
67 |
74 |
5 |
44 |
||
1 |
18 |
23 |
33 |
38 |
52 |
62 |
67 |
75 |
66 |
24 |
36 |
40 |
79 |
1 |
17 |
47 |
59 |
||
65 |
79 |
60 |
13 |
21 |
8 |
45 |
50 |
28 |
80 |
2 |
41 |
48 |
60 |
18 |
22 |
34 |
64 |
||
48 |
35 |
40 |
77 |
55 |
72 |
25 |
6 |
11 |
58 |
16 |
46 |
35 |
65 |
23 |
3 |
42 |
81 |
Putting
the grids in random order gives (4 x 3 x 2 x 1 = ) 24 possibilities. Swapping the numbers 0, 1 and 2 within each grid gives ([3x2x1]x[3x2x1]x[3x2x1]x[3x2x1] = ) 1296
possibilities. In total you can construct (24 x 1296 = ) 31104 different 9x9 bimagic squares.