Construct a row grid and a column grid. Use the middle numbers 1 up to 7 to produce the panmagic 7x7 inlay square with the shift method. Puzzle the border.
1x number from row grid +1
4 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 0 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
0 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 8 |
8 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 0 |
8 | 7 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
0 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 8 |
8 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 0 |
0 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | 8 |
8 | 7 | 6 | 5 | 3 | 2 | 1 | 0 | 4 |
+9x number from column grid
0 | 8 | 8 | 0 | 0 | 8 | 8 | 0 | 4 |
1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 7 |
7 | 6 | 7 | 1 | 2 | 3 | 4 | 5 | 1 |
2 | 4 | 5 | 6 | 7 | 1 | 2 | 3 | 6 |
8 | 2 | 3 | 4 | 5 | 6 | 7 | 1 | 0 |
3 | 7 | 1 | 2 | 3 | 4 | 5 | 6 | 5 |
6 | 5 | 6 | 7 | 1 | 2 | 3 | 4 | 2 |
5 | 3 | 4 | 5 | 6 | 7 | 1 | 2 | 3 |
4 | 0 | 0 | 8 | 8 | 0 | 0 | 8 | 8 |
= Panmagic 7x7 in 9x9 magic square
5 | 74 | 75 | 4 | 6 | 79 | 80 | 9 | 37 |
10 | 11 | 21 | 31 | 41 | 51 | 61 | 71 | 72 |
64 | 58 | 68 | 15 | 25 | 35 | 38 | 48 | 18 |
27 | 42 | 52 | 62 | 65 | 12 | 22 | 32 | 55 |
81 | 26 | 29 | 39 | 49 | 59 | 69 | 16 | 1 |
28 | 66 | 13 | 23 | 33 | 43 | 53 | 56 | 54 |
63 | 50 | 60 | 70 | 17 | 20 | 30 | 40 | 19 |
46 | 34 | 44 | 47 | 57 | 67 | 14 | 24 | 36 |
45 | 8 | 7 | 78 | 76 | 3 | 2 | 73 | 77 |
Use this method to construct inlaid squares of odd order from 5x5 to infinity.
See 5x5, 7x7, 9x9, 11x11, 13x13, 15x15, 17x17, 19x19, 21x21, 23x23, 25x25, 27x27, 29x29 & 31x31