Paul Michelet constructed a 9x9 reversible panmagic (and 3x3 compact & symmetric) square.
In the square are the numbers 11/19, 21/29, 31/39, 41/49, 51/59, 61/69, 71/79, 81/89 and 91/99.
If you reverse the digits of all numbers in the 9x9 panmagic square (i.e. 19 reversed is 91) you get another 9x9 panmagic (and 3x3 compact & symmetric) square.
9x9 reversible panmagic (and 3x3 compact & symmetric) square
81 |
86 |
18 |
11 |
16 |
68 |
61 |
66 |
|
38 |
31 |
36 |
58 |
51 |
56 |
78 |
71 |
76 |
48 |
41 |
46 |
98 |
91 |
96 |
28 |
21 |
26 |
83 |
85 |
87 |
13 |
15 |
17 |
63 |
65 |
67 |
33 |
35 |
37 |
53 |
55 |
57 |
73 |
75 |
77 |
43 |
45 |
47 |
93 |
95 |
97 |
23 |
25 |
27 |
84 |
89 |
82 |
14 |
19 |
12 |
64 |
69 |
62 |
34 |
39 |
32 |
54 |
59 |
52 |
74 |
79 |
72 |
44 |
49 |
42 |
94 |
99 |
92 |
24 |
29 |
22 |
Reversed 9x9 panmagic (and 3x3 compact & symmetric) square
18 |
68 |
81 |
11 |
61 |
86 |
16 |
66 |
|
83 |
13 |
63 |
85 |
15 |
65 |
87 |
17 |
67 |
84 |
14 |
64 |
89 |
19 |
69 |
82 |
12 |
62 |
38 |
58 |
78 |
31 |
51 |
71 |
36 |
56 |
76 |
33 |
53 |
73 |
35 |
55 |
75 |
37 |
57 |
77 |
34 |
54 |
74 |
39 |
59 |
79 |
32 |
52 |
72 |
48 |
98 |
28 |
41 |
91 |
21 |
46 |
96 |
26 |
43 |
93 |
23 |
45 |
95 |
25 |
47 |
97 |
27 |
44 |
94 |
24 |
49 |
99 |
29 |
42 |
92 |
22 |
It is possible to construct a reversible 9x9 magic square, which is not only panmagic, 3x3 compact and symmetric, but also 1/3 of each row and 1/3 of each column gives 1/3 of the magic sum.
Take 1x number from first grid
1 |
5 |
9 |
6 |
7 |
2 |
8 |
3 |
4 |
8 |
3 |
4 |
1 |
5 |
9 |
6 |
7 |
2 |
6 |
7 |
2 |
8 |
3 |
4 |
1 |
5 |
9 |
1 |
5 |
9 |
6 |
7 |
2 |
8 |
3 |
4 |
8 |
3 |
4 |
1 |
5 |
9 |
6 |
7 |
2 |
6 |
7 |
2 |
8 |
3 |
4 |
1 |
5 |
9 |
1 |
5 |
9 |
6 |
7 |
2 |
8 |
3 |
4 |
8 |
3 |
4 |
1 |
5 |
9 |
6 |
7 |
2 |
6 |
7 |
2 |
8 |
3 |
4 |
1 |
5 |
9 |
+ 10x number from second grid
1 |
8 |
6 |
1 |
8 |
6 |
1 |
8 |
6 |
5 |
3 |
7 |
5 |
3 |
7 |
5 |
3 |
7 |
9 |
4 |
2 |
9 |
4 |
2 |
9 |
4 |
2 |
6 |
1 |
8 |
6 |
1 |
8 |
6 |
1 |
8 |
7 |
5 |
3 |
7 |
5 |
3 |
7 |
5 |
3 |
2 |
9 |
4 |
2 |
9 |
4 |
2 |
9 |
4 |
8 |
6 |
1 |
8 |
6 |
1 |
8 |
6 |
1 |
3 |
7 |
5 |
3 |
7 |
5 |
3 |
7 |
5 |
4 |
2 |
9 |
4 |
2 |
9 |
4 |
2 |
9 |
= Ultra magic 9x9 reversible square
11 |
85 |
69 |
16 |
87 |
62 |
18 |
83 |
64 |
58 |
33 |
74 |
51 |
35 |
79 |
56 |
37 |
72 |
96 |
47 |
22 |
98 |
43 |
24 |
91 |
45 |
29 |
61 |
15 |
89 |
66 |
17 |
82 |
68 |
13 |
84 |
78 |
53 |
34 |
71 |
55 |
39 |
76 |
57 |
32 |
26 |
97 |
42 |
28 |
93 |
44 |
21 |
95 |
49 |
81 |
65 |
19 |
86 |
67 |
12 |
88 |
63 |
14 |
38 |
73 |
54 |
31 |
75 |
59 |
36 |
77 |
52 |
46 |
27 |
92 |
48 |
23 |
94 |
41 |
25 |
99 |
If you reverse the digits of each number, you get:
Reversed ultra magic 9x9 square
11 |
58 |
96 |
61 |
78 |
26 |
81 |
38 |
46 |
85 |
33 |
47 |
15 |
53 |
97 |
65 |
73 |
27 |
69 |
74 |
22 |
89 |
34 |
42 |
19 |
54 |
92 |
16 |
51 |
98 |
66 |
71 |
28 |
86 |
31 |
48 |
87 |
35 |
43 |
17 |
55 |
93 |
67 |
75 |
23 |
62 |
79 |
24 |
82 |
39 |
44 |
12 |
59 |
94 |
18 |
56 |
91 |
68 |
76 |
21 |
88 |
36 |
41 |
83 |
37 |
45 |
13 |
57 |
95 |
63 |
77 |
25 |
64 |
72 |
29 |
84 |
32 |
49 |
14 |
52 |
99 |